1 | YANG Y H, ZHANG G Z, YANG H, et al. Study on cellar rainwater treated by different size BAC in villages and towns of northwestern China[C]// Asia-Pacific Energy Equipment Engineering Research Conference, 2015. | 2 | XING W L, LIANG J, TANG W W, et al. Perchlorate removal from brackish water by capacitive deionization: experimental and theoretical investigations[J]. Chemical Engineering Journal, 2019, 361: 209-218. | 3 | LEE J H, KIM S N, KIM C S, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science, 2014, 11(7): 3683-3689. | 4 | 赵玉华, 陈芳, 李艳凤, 等. 化学氧化法处理高铁锰微污染地下水的实验[J]. 沈阳建筑大学学报(自然科学版), 2012, 28(6): 1098-1102. | 4 | ZHAO Y H, CHEN F, LI Y F, et al. Experimental research of micro-chemical oxidation treatment of high iron and manganese contaminated groundwater[J]. Journal of Shenyang Jianzhu University (Natural Science), 2012, 28(6): 1098-1102. | 5 | WANG H L, JI G D, BAI X Y. Quantifying nitrogen transformation process rates using nitrogen functional genesin a multimedia biofilter under hydraulic loading rate constraints[J]. Ecological Engineering, 2015, 82: 323-329. | 6 | 刘洲洲. 新型改性淀粉混凝剂对地表水处理的应用及机理研究[D]. 南京: 南京大学, 2018. | 6 | LIU Z Z. Application and mechanism of novel starch-based coagulants in surface water treatment[D]. Nanjing: Nanjing University, 2018. | 7 | WANG T C, LI Y J, QU G Z, et al. Enhanced removal of humic acid from micro-polluted source water in a surface discharge plasma system coupled with activated carbon[J]. Environmental Science and Pollution Research, 2017, 24(27): 21591-21600. | 8 | AYOUB H, ROQUES-CARMES T, POTIER O, et al. Iron-impregnated zeolite catalyst for efficient removal of micropollutants at very low concentration from Meurthe river[J]. Environmental Science and Pollution Research, 2018, 25(336):1-18. | 9 | KIM K S, OH B S, KANG J W, et al. Effect of ozone and GAC process for the treatment of micropollutants and DBPs control in drinking water: pilot scale evaluation[J]. Ozone: Science & Engineering, 2005, 27(1): 69-79. | 10 | EVANS S, HAMILTON W S. The mechanism of demineralization at carbon electrodes[J]. Journal of the Electrochemical Society, 1966, 113(12): 1314-1319. | 11 | MURPHY G W, CAUDLE D D. Mathematical theory of electrochemical demineralization in flowing systems[J]. Electrochimica Acta, 1967, 12(12): 1655-1664. | 12 | PORADA S, ZHAO R, VAN D W A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. | 13 | LEE J B, PARK K K, EUM H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196(1/2/3): 125-134. | 14 | JEON S I, PARK H R, YEO J G, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471-1475. | 15 | HE F, BIESHEUVEL P M, BAZANT M Z, et al. Theory of water treatment by capacitive deionization with redox active porous electrodes[J]. Water Research, 2018, (132): 282-291. | 16 | CHENG Y T, HAO Z Q, HAO C R, et al. A review of modification of carbon electrode material in capacitive deionization[J]. The Royal Society of Chemistry, 2019, 9: 24401-24419. | 17 | LI H B, MA Y L, NIU R. Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes[J]. Separation and Purification Technology, 2016, 171: 93-100. | 18 | YOON H, LEE J, KIM S, et al. Hybrid capacitive deionization with Ag coated carbon composite electrode[J]. Desalination, 2017, 422: 42-48. | 19 | JIA B P, ZHANG W. Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review[J]. Nanoscale Research Letters, 2016, 11(1): 64-89. | 20 | SUSS M E, PORADA S, SUN X, et al. Water desalination via capacitive deionization[J]. Energy & Environmental Science, 2015, 8(8): 2296-2319. | 21 | FRITZ P A, ZISOPOULOS F K, VERHEGGEN S, et al. Exergy analysis of membrane capacitive deionization (MCDI)[J]. Desalination, 2018, 444: 162-168. | 22 | WANG Z J, GONG H, ZHANG Y, et al. Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process[J]. Chemical Engineering Journal, 2017, 316(Complete):1-6. | 23 | TANG W W, LIANG J, HE D, et al. Various cell architectures of capacitive deionization: recent advances and future trends[J]. Water Research, 2019, 150: 225-251. | 24 | SHAPIRA B, AVRAHAM E, AURBACH D. Side reactions in capacitive deionization (CDI) processes: the role of oxygen reduction[J]. Electrochimica Acta, 2016, 220: 285-295. | 25 | CHEN Z L, ZHANG H T, WU C X, et al. A study of the effect of carbon characteristics on capacitive deionization (CDI) performance[J]. Desalination, 2018, 433: 68-74. | 26 | SOUAD R, IBTISSEM B A, YOSRA L, et al. Microporous activated carbon electrode derived from date stone without use of binder for capacitive deionization application[J]. Materials Research Bulletin, 2019, 111: 222-229. | 27 | ZHANG D S, WEN X R, SHI L Y, et al. Enhanced capacitive deionization of graphene/mesoporous carbon composites[J]. Nanoscale, 2012, 4(17): 5440-5446. | 28 | LI M Z, CHEN Y Z, HUANG Z H, et al. Asymmetric electrodes constructed with PAN-based activated carbon fiber in capacitive deionization[J]. Journal of Nanomaterials, 2014, 2014: 1-6. | 29 | WANG L, WANG M, HUANG Z H, et al. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes[J]. Journal of Materials Chemistry, 2011, 21(45): 18295-18299. | 30 | LEE B, PARK N, KANG K S, et al. Enhanced capacitive deionization by dispersion of CNTs in activated carbon electrode[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1572-1579. | 31 | QUAN X, FU Z, YUAN L, et al. Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes[J]. RSC Adv., 2017, 7(57): 35875-35882. | 32 | LIU X J, LIU H, MI M J, et al. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization[J]. Separation and Purification Technology, 2019, 224: 44-50 | 33 | OREN Y. Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review)[J]. Desalination, 2008, 228(1/2/3): 10-29. | 34 | JANDE Y A C, MINHAS M B, KIM W S. Ultrapure water from seawater using integrated reverse osmosis-capacitive deionization system[J]. Desalination and Water Treatment, 2015, 53(13): 3482-3490. | 35 | MINHAS M B, JANDE Y A C, KIM W S. Hybrid reverse osmosis-capacitive deionization versus two-stage reverse osmosis: a comparative analysis[J]. Chemical Engineering & Technology, 2014, 37(7): 1137-1145. | 36 | JAEHAN L, KYUSIK J, JIHO L, et al. Rocking chair capacitive deionization for continuous brackish water desalination[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (8): 10815-10822. | 37 | QIN M, DESHMUKH A, EPSZTEIN R, et al. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis[J]. Desalination, 2019, 455: 100-114. | 38 | MA S C, MA L, CHEN G D, et al. Experimental study on desalination using electro-sorption technology with plate-type activated carbon fiber electrode[J]. Desalination and Water Treatment, 2018, 126: 116-126 | 39 | 刘江, 谢凤龙, 张鹏. 电吸附技术在电厂废水处理中的试验研究[J]. 工业水处理, 2015, 35(4): 68-71. | 39 | LIU J, XIE F L, ZHANG P. Experimental research on the application of electro-adsorption technique to wastewater treatment in power plants[J]. Industrial Water Treatment, 2015, 35(4): 68-71. | 40 | 罗延歆. 淮南矿区矿井水处理及电吸附技术应用[J]. 煤炭工程, 2017, 49(5): 66-68. | 40 | LUO Y Q. Characteristics, treatment and application of electrosorb technology in coal mine water[J]. Coal Engineering, 2017, 49(5): 66-68. | 41 | HASNA S, KAMEL-EDDINE B. Feasibility and optimization of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters[J]. Journal of Cleaner Production, 2018, 205: 721-727. | 42 | 刘洋. 电吸附技术用于工业废水脱盐的特性研究[D]. 北京: 北京化工大学, 2014. | 42 | LIU Y. Characteristics research on industrial wastewater desalination by electro adsorption technology[D]. Beijing: Beijing University of Chemical Technology, 2014. | 43 | ZHANG C Y, HE D, MA J X, et al. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: a review[J]. Water Research, 2018, 112: 314-330. | 44 | LU D, CAI W F, WANG Y. Optimization of the voltage window for long-term capacitive deionization stability[J]. Desalination, 2017, 424: 53-61. | 45 | PORADA S, BRYJAK M, VAN DER WAL A, et al. Effect of electrode thickness variation on operation of capacitive deionization[J]. Electrochimica Acta, 2012, 75: 148-156. | 46 | LIU X, WHITACRE J F, MAUTER M S. Mechanisms of humic acid fouling on capacitive and insertion electrodes for electrochemical desalination[J]. Environmental Science & Technology, 2018, 52: 12633-12641. | 47 | MANNINEN N, SOINNE H, LEMOLA R, et al. Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage[J]. Science of the Total Environment, 2018, 618: 1519-1528. | 48 | SUSS M E, PRESSER V. Water desalination with energy storage electrode materials[J]. Joule, 2018, 2: 10-15. |
|