化工进展 ›› 2024, Vol. 43 ›› Issue (2): 913-924.DOI: 10.16085/j.issn.1000-6613.2023-0224
收稿日期:
2023-02-20
修回日期:
2023-05-10
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
曾爱武
作者简介:
张瑞凯(1994—),男,硕士研究生,研究方向为传质与分离。E-mail: zrk@ tju.edu.cn。
ZHANG Ruikai(), ZHANG Huishu, ZHENG Longyun, ZENG Aiwu()
Received:
2023-02-20
Revised:
2023-05-10
Online:
2024-02-25
Published:
2024-03-07
Contact:
ZENG Aiwu
摘要:
界面浓度梯度导致的Rayleigh对流现象能够显著提高CO2吸收过程的传质速率,然而目前该过程的传质强化机制尚未清晰。为探究Rayleigh对流传质过程的强化机制,本文以水吸收CO2过程为研究对象,基于粒子图像测速技术(PIV)和激光诱导荧光技术(LIF)实现了不同气相CO2分压条件下界面对流的可视化与定量测量。实验发现,界面平均浓度在对流发生的临界时刻会瞬间下降并在有序的自组织结构形成后上升,最终的界面平均浓度会随着气相CO2分压减小而减小;对流发生后,系统传质能力的提高分为两个阶段,涡量场在有序的自组织结构形成前起主导作用,有序的自组织结构形成后,系统传质能力的提高则是由涡量场与界面浓度共同作用的结果;有序的自组织结构形成后,不同系统的平均瞬时传质系数与平均涡量具有很强的相关性,表明浓度场与速度场相互作用形成的涡量场在对流传质强化过程中发挥着重要作用。
中图分类号:
张瑞凯, 张会书, 郑龙云, 曾爱武. CO2吸收过程中气相分压对Rayleigh对流传质特性的影响[J]. 化工进展, 2024, 43(2): 913-924.
ZHANG Ruikai, ZHANG Huishu, ZHENG Longyun, ZENG Aiwu. Effect of gas partial pressure on Rayleigh convection mass transfer characteristics during CO2 absorption[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 913-924.
气相CO2分压/kPa | Ra数 |
---|---|
101 | 1.54×109 |
72.1 | 1.10×109 |
57.7 | 0.88×109 |
43.3 | 0.66×109 |
28.8 | 0.44×109 |
14.4 | 0.22×109 |
表1 不同气相CO2分压传质条件对应的Ra数
气相CO2分压/kPa | Ra数 |
---|---|
101 | 1.54×109 |
72.1 | 1.10×109 |
57.7 | 0.88×109 |
43.3 | 0.66×109 |
28.8 | 0.44×109 |
14.4 | 0.22×109 |
∆ρsat [ | ∆σsat [ | D[ | μ[ |
---|---|---|---|
0.40 | -5×10-5 | 1.97×10-9 | 8.8×10-4 |
表2 H2O-CO2体系在298.15K、101.325kPa下的物性参数
∆ρsat [ | ∆σsat [ | D[ | μ[ |
---|---|---|---|
0.40 | -5×10-5 | 1.97×10-9 | 8.8×10-4 |
1 | 余国琮, 袁希钢. 化工计算传质学导论[M]. 天津: 天津大学出版社, 2011: 298-327. |
YU Guocong, YUAN Xigang. Introduction to computational mass transfer in chemical engineering[M]. Tianjin: Tianjin University Press, 2011: 298-327. | |
2 | ORELL A, WESTWATER J. Spontaneous interfacial cellular convection accompanying mass transfer: Ethylene glycol-acetic acid-ethyl acetate[J]. AIChE Journal, 1962, 8(3): 350-356. |
3 | KHOSROKHAVAR R, ELSINGA G, FARAJZADEH R, et al. Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems[J]. Journal of Petroleum Science and Engineering, 2014, 122: 230-239. |
4 | 王勇, 张泽廷. 气液传质相界面湍动现象的实验及分析[J]. 北京化工大学学报(自然科学版), 2002, 29(2): 11-14. |
WANG Yong, ZHANG Zeting. Optical observation and analysis of the interfacial turbulence in mass transfer processes of gas-liquid systems[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2002, 29(2): 11-14. | |
5 | OKHOTSIMSKII A, HOZAWA M. Schlieren visualization of natural convection in binary gas-liquid systems[J]. Chemical Engineering Science, 1998, 53(14): 2547-2573. |
6 | 于艺红. 气-液传质过程界面湍动的研究[D]. 天津: 天津大学, 2003. |
YU Yihong. Study on interfacial turbulence in gas-liquid mass transfer process[D]. Tianjin: Tianjin University, 2003. | |
7 | KUSTER S, RIOLFO L A, ZALTS A, et al. Differential diffusion effects on buoyancy-driven instabilities of acid-base fronts: The case of a color indicator[J]. Physical Chemistry Chemical Physics, 2011, 13(38): 17295-17303. |
8 | THOMAS C, LEMAIGRE L, ZALTS A, et al. Experimental study of CO2 convective dissolution: The effect of color indicators[J]. International Journal of Greenhouse Gas Control, 2015, 42: 525-533. |
9 | JIANG Lanlan, WANG Sijia, ABUDULA A, et al. The effect of density difference on the development of density-driven convection under large Rayleigh number[J]. International Journal of Heat and Mass Transfer, 2019, 139: 1087-1095. |
10 | 于海路. 气液传质过程中界面对流的研究[D]. 天津: 天津大学, 2014. |
YU Hailu. The study of interfacial convection in the process of gas-liquid mass transfer[D]. Tianjin: Tianjin University, 2014. | |
11 | 赵嵩. 气液传质过程中界面对流的纹影实验研究[D]. 天津: 天津大学, 2016. |
ZHAO Song. Experimental investigations of solutal interfacial convection by schlieren method[D]. Tianjin: Tianjin University, 2016. | |
12 | ALVAREZ-HERRERA C, MORENO-HERNÁNDEZ D, BARRIENTOS-GARCÍA B, et al. Temperature measurement of air convection using a Schlieren system[J]. Optics & Laser Technology, 2009, 41(3): 233-240. |
13 | 陈炜. 气液界面Rayleigh-Bénard-Marangoni对流现象实验测量及传质研究[D]. 天津: 天津大学, 2014. |
CHEN Wei. Experimental measurement of gas-liquid interfacial Rayleigh-Bénard-Marangoni convection and mass transfer[D]. Tianjin: Tianjin University, 2014. | |
14 | 胡楠. 气相添加第二组分对水溶解CO2过程界面对流影响的LIF/PIV实验研究[D]. 天津: 天津大学, 2017. |
HU Nan. Experiment study on the effect of additive component in gas phase on the interfacial convection of CO2-water dissolution process by LIF/PIV technique[D]. Tianjin: Tianjin University, 2017. | |
15 | 傅强. 气液传质过程中界面对流现象的PIV/LIF测量及研究[D]. 天津: 天津大学, 2018. |
FU Qiang. On the PIV/LIF measurement and analysis of interfacial convection phenomenon in gas-liquid mass transfer processes[D]. Tianjin: Tianjin University, 2018. | |
16 | FU Bo, YUAN Xigang, LIU Botan, et al. Characterization of Rayleigh convection in interfacial mass transfer by lattice Boltzmann simulation and experimental verification[J]. Chinese Journal of Chemical Engineering, 2011, 19(5): 845-854. |
17 | FU Bo, LIU Botan, YUAN Xigang, et al. Modeling of Rayleigh convection in gas-liquid interfacial mass transfer using lattice Boltzmann method[J]. Chemical Engineering Research and Design, 2013, 91(3): 437-447. |
18 | FU Bo, ZHANG Runye, XIAO Ruixue, et al. Simulation of interfacial mass transfer process accompanied by Rayleigh convection in NaCl solution[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103281. |
19 | FU Bo, ZHANG Runye, LIU Ju, et al. Simulation of CO2 Rayleigh convection in aqueous solutions of NaCl, KCl, MgCl2 and CaCl2 using lattice Boltzmann method[J]. International Journal of Greenhouse Gas Control, 2020, 98: 103066. |
20 | GUO Kai, LIU Chunjiang, CHEN Shuyong, et al. Modeling with statistical hydrodynamic quantities of mass transfer across gas-liquid interface with Rayleigh convection[J]. Chemical Engineering Science, 2015, 135: 33-44. |
21 | GUO Kai, LIU Chunjiang, CHEN Shuyong, et al. Spatial scale effects on Rayleigh convection and interfacial mass transfer characteristics in CO2 absorption[J]. Chemical Engineering & Technology, 2015, 38(1): 23-32. |
22 | GE Xiaolong, LIU Botong, LIU Botan, et al. Three-dimensional numerical simulation of gas-liquid interfacial mass transfer with Rayleigh convection using hybrid LBM-FDM and its mass transfer coefficient model[J]. Chemical Engineering Science, 2019, 197: 52-68. |
23 | GE Xiaolong, LIU Botong, LIU Botan, et al. Numerical simulation of evaporation with Rayleigh convection using LBM-FDM hybrid method and proposal of the interfacial mass transfer coefficient model[J]. International Journal of Heat and Mass Transfer, 2019, 133: 107-118. |
24 | ZHANG Zhen, FU Qiang, ZHANG Huishu, et al. Experimental and numerical investigation on interfacial mass transfer mechanism for Rayleigh convection in Hele-Shaw cell[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10195-10209. |
25 | TAN Ka-Kheng, Beng-Ti TEY, TAN Yee-Wan. Onset of natural convection in gas-gas system induced by bottom-up transient mass diffusion[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(4): 475-482. |
26 | HASSANZADEH H, POOLADI-DARVISH M, KEITH D W. The effect of natural flow of aquifers and associated dispersion on the onset of buoyancy-driven convection in a saturated porous medium[J]. AIChE Journal, 2009, 55(2): 475-485. |
27 | BARBOSA J R, THOMA S M, MARCELINO NETO M A. Prediction of refrigerant absorption and onset of natural convection in lubricant oil[J]. International Journal of Refrigeration, 2008, 31(7): 1231-1240. |
28 | 童润中. PIV在国内各领域相关研究中应用的探讨[J]. 信息记录材料, 2022, 23(5): 230-233. |
TONG Runzhong. Discussion on the application of PIV in related research in various fields in China[J]. Information Recording Materials, 2022, 23(5): 230-233. | |
29 | 黄真理, 李玉梁, 余常昭. 平面激光诱导荧光技术测量横流中射流浓度场的研究[J]. 水利学报, 1994, 25(11): 1-7. |
HUANG Zhenli, LI Yuliang, YU Changzhao. Study on measurement of jet concentration field in cross flow by plane laser induced fluorescence technique[J]. Journal of Hydraulic Engineering, 1994, 25(11): 1-7. | |
30 | 程易, 王铁峰. 多相流测量技术及模型化方法[M]. 北京: 化学工业出版社, 2016: 61-62. |
CHENG Yi, WANG Tiefeng. Measurement technique and modeling method of multiphase flow[M]. Beijing: Chemical Industry Press, 2016: 61-62. | |
31 | 孙衍增. 荧光素钠荧光寿命的测定[J]. 分析化学, 2000, 28(11): 1413-1416. |
SUN Yanzeng. Determination of fluorescence lifetime of sodium fluorescein[J]. Chinese Journal of Analytical Chemistry, 2000, 28(11): 1413-1416. | |
32 | DEAN J A. Lange's handbook of chemistry[M]. 15th ed. New York: McGraw-Hill, Inc., 1998. |
33 | SONG Y, NISHIO M, CHEN B, et al. Measurement on CO2 solution density by optical technology[J]. Journal of Visualization, 2003, 6(1): 41-51. |
34 | CARROLL J J, SLUPSKY J D, MATHER A E. The solubility of carbon dioxide in water at low pressure[J]. Journal of Physical and Chemical Reference Data, 1991, 20(6): 1201-1209. |
35 | FRANK M J W, KUIPERS J A M, VAN SWAAIJ W P M. Diffusion coefficients and viscosities of CO2+H2O, CO2+CH3OH, NH3+H2O, and NH3+CH3OH liquid mixtures[J]. Journal of Chemical & Engineering Data, 1996, 41(2): 297-302. |
36 | BINDA L, FERNÁNDEZ D, HASI C EL, et al. Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Experimental study[J]. Chaos, 2018, 28(1): 013107. |
37 | FERNANDEZ D, BINDA L, ZALTS A, et al. Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Numerical analysis[J]. Chaos, 2018, 28(1): 013108. |
38 | 李冬. 界面对流强化传质的理论分析[D]. 天津: 天津大学, 2018. |
LI Dong. Theoretical analysis of interfacial convection enhancing mass transfer[D]. Tianjin: Tianjin University, 2018. |
[1] | 姚福春, 毕莹莹, 唐晨, 杜明辉, 李泽莹, 张耀宗, 孙晓明. 中空纤维膜臭氧接触式反应器传质机理分析[J]. 化工进展, 2024, 43(2): 1089-1097. |
[2] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[3] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[4] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[5] | 李蕴琪, 谢函霏, 崔丽瑞, 卢善富. 图案化微米线阵列Nafion膜制备及燃料电池性能[J]. 化工进展, 2024, 43(1): 320-327. |
[6] | 袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48. |
[7] | 裴文艺, 陈子阳, 赵萌, 姜红, 陈日志. 预润湿对Janus陶瓷膜制备及布气性能的影响[J]. 化工进展, 2024, 43(1): 353-363. |
[8] | 周媚, 曾浩桀, 卢俊宁, 蒲婷, 刘宝玉. 等级孔分子筛构筑及扩散过程强化研究进展[J]. 化工进展, 2024, 43(1): 76-86. |
[9] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[10] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[11] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[12] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[13] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[14] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[15] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |