化工进展 ›› 2024, Vol. 43 ›› Issue (1): 34-48.DOI: 10.16085/j.issn.1000-6613.2023-1167
收稿日期:
2023-07-10
修回日期:
2023-10-25
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
从海峰,李鑫钢
作者简介:
袁谅(1997—),女,博士研究生,研究方向为化工传质与分离技术。E-mail:1022207052@tju.edu.cn。
基金资助:
YUAN Liang1(), CONG Haifeng1,2(), LI Xingang1,2()
Received:
2023-07-10
Revised:
2023-10-25
Online:
2024-01-20
Published:
2024-02-05
Contact:
CONG Haifeng, LI Xingang
摘要:
微化工过程具有高效、安全、节能、体积小和高传热传质率等方面的固有优势,其在气液非均相传质与反应强化领域表现出巨大的发展潜力。本文系统论述了微通道内气液两相流动与传质特性的研究现状,总结了微通道内气液两相流型及分布情况,从操作条件和微通道设计等方面分析了影响两相流型的关键因素,并讨论了多种因素对传质与过程强化的影响方式,对目前研究的微通道内气液两相的传质模型进行了总结分类。以气液两相在主要流动通道的流动形态为基准,分类介绍了多种气液两相微反应器的最新研究进展。文中指出进一步探究微化工过程强化方式以及开发新型气液微通道反应器仍是未来微化工研究的重点发展方向。
中图分类号:
袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48.
YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48.
模型 | 主要假设 | 出处 | 量纲为1数数量级 | |
---|---|---|---|---|
Pe | Ca | |||
单元传质模型 | 气相和液相在每个单元中都分别混合得很好 从气相到液相的传质只发生在独立单元中 不同单元之间不会发生混合 | Yao等[ | 104~105 | 10-3 |
三层传质模型 | 在段塞中以对流传质为主 | Abiev[ | 105 | 10-2 |
膜层中以扩散为主 | Svetlov等[ | |||
液膜-段塞交换模型 | 薄膜中完美混合 段塞中完美混合 | Butler等[ | 105 | 10-2 |
气泡列流模型 | 气体浓度沿流线均匀 | Eskin等[ | 104~105 | 10-2 |
帽层使用平均传质系数 | Nirmal等[ |
表1 基于传质机理的传质模型对比
模型 | 主要假设 | 出处 | 量纲为1数数量级 | |
---|---|---|---|---|
Pe | Ca | |||
单元传质模型 | 气相和液相在每个单元中都分别混合得很好 从气相到液相的传质只发生在独立单元中 不同单元之间不会发生混合 | Yao等[ | 104~105 | 10-3 |
三层传质模型 | 在段塞中以对流传质为主 | Abiev[ | 105 | 10-2 |
膜层中以扩散为主 | Svetlov等[ | |||
液膜-段塞交换模型 | 薄膜中完美混合 段塞中完美混合 | Butler等[ | 105 | 10-2 |
气泡列流模型 | 气体浓度沿流线均匀 | Eskin等[ | 104~105 | 10-2 |
帽层使用平均传质系数 | Nirmal等[ |
1 | 骆广生, 王凯, 徐建鸿, 等. 微化工过程研究进展[J]. 中国科学: 化学, 2014, 44(9): 1404-1412. |
LUO Guangsheng, WANG Kai, XU Jianhong, et al. Advances in research of microstructured chemical process[J]. Scientia Sinica Chimica, 2014, 44(9): 1404-1412. | |
2 | PENNEMANN H, WATTS P, HASWELL S J, et al. Benchmarking of microreactor applications[J]. Organic Process Research & Development, 2004, 8(3): 422-439. |
3 | CHENG Hao, FAN Yilin, TARLET Dominique, et al. Microfluidic-based chemical absorption technology for CO2 capture: Mass transfer dynamics, operating factors and performance intensification[J]. Renewable and Sustainable Energy Reviews, 2023, 181: 113357. |
4 | SHENG Lin, WANG Kai, DENG Jian, et al. Gas-liquid microdispersion and microflow for carbon dioxide absorption and utilization: A review[J]. Current Opinion in Chemical Engineering, 2023, 40: 100917. |
5 | LEFORTIER S G R, HAMERSMA P J, BARDOW A, et al. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab on a Chip, 2012, 12(18): 3387. |
6 | MACINNES J M, AYASH A A, DOWSON G R M. CO2 absorption using diethanolamine-water solutions in a rotating spiral contactor[J]. Chemical Engineering Journal, 2017, 307: 1084-1091. |
7 | 郭戎威, 付涛涛, 朱春英, 等. 微通道内气-液两相流及并行放大的研究进展[J]. 化学工业与工程, 2021, 38(6): 74-86. |
GUO Rongwei, FU Taotao, ZHU Chunying, et al. Research progress on gas-liquid two-phase flow and numbering-up strategy in microchannel[J]. Chemical Industry and Engineering, 2021, 38(6): 74-86. | |
8 | LOKHAT David, DOMAH Ashveer Krishen, PADAYACHEE Kuveshan, et al. Gas-liquid mass transfer in a falling film microreactor: Effect of reactor orientation on liquid-side mass transfer coefficient[J]. Chemical Engineering Science, 2016, 155: 38-44. |
9 | STAEDTER M A, GARIMELLA S. Development of a micro-scale heat exchanger based, residential capacity ammonia-water absorption chiller[J]. International Journal of Refrigeration, 2018, 89: 93-103. |
10 | CHAMBERS R D, SPINK R C H. Microreactors for elemental fluorine[J]. Chemical Communications, 1999(10): 883-884. |
11 | CHAMBERS R D, HOLLING D, SPINK R, et al. Elemental fluorine. Part 13. Gas-liquid thin film microreactors for selective direct fluorination[J]. Lab on a Chip, 2001, 1(2): 132-137. |
12 | JÄHNISCH K, BAERNS M, HESSEL V, et al. Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors[J]. Journal of Fluorine Chemistry, 2000, 105(1): 117-128. |
13 | PASHA Mohsin, ZHANG Hong, SHANG Minjing, et al. CO2 absorption with diamine functionalized deep eutectic solvents in microstructured reactors[J]. Process Safety and Environmental Protection, 2022, 159: 106-119. |
14 | KAWAHARA A, M-Y CHUNG P, KAWAJI M. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel[J]. International Journal of Multiphase Flow, 2002, 28(9): 1411-1435. |
15 | TRIPLETT K A, GHIAASIAAN S M, ABDEL-KHALIK S I, et al. Gas-liquid two-phase flow in microchannels Part I: Two-phase flow patterns[J]. International Journal of Multiphase Flow, 1999, 25(3): 377-394. |
16 | CHEN W L, TWU M C, PAN C. Gas-liquid two-phase flow in micro-channels[J]. International Journal of Multiphase Flow, 2002, 28(7): 1235-1247. |
17 | ZHAO T S, BI Q C. Co-current air-water two-phase flow patterns in vertical triangular microchannels[J]. International Journal of Multiphase Flow, 2001, 27(5): 765-782. |
18 | BARAJAS A M, PANTON R L. The effects of contact angle on two-phase flow in capillary tubes[J]. International Journal of Multiphase Flow, 1993, 19(2): 337-346. |
19 | AKBAR M K, PLUMMER D A, GHIAASIAAN S M. On gas-liquid two-phase flow regimes in microchannels[J]. International Journal of Multiphase Flow, 2003, 29(5): 855-865. |
20 | SHAO N, GAVRIILIDIS A, ANGELI P. Flow regimes for adiabatic gas-liquid flow in microchannels[J]. Chemical Engineering Science, 2009, 64(11): 2749-2761. |
21 | MEI Mei, LE MEN Claude, Karine LOUBIèRE, et al. Taylor bubble formation and flowing in a straight millimetric channel with a cross-junction inlet geometry. Part I: Bubble dynamics[J]. Chemical Engineering Science, 2022, 255, 117609. |
22 | PANG Zifan, ZHU Chunying, MA Youguang, et al. CO2 absorption by liquid films under Taylor flow in serpentine minichannels[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12250-12261. |
23 | YANG Lixia, DIETRICH Nicolas, Karine LOUBIÈRE, et al. Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[J]. Chemical Engineering Science, 2016, 143: 364-368. |
24 | CHEN Yuchao, SHENG Lin, DENG Jian, et al. Geometric effect on gas-liquid bubbly flow in capillary-embedded T-junction microchannels[J]. Industrial & Engineering Chemistry Research, 2021, 60(12): 4735-4744. |
25 | GANAPATHY H, SHOOSHTARI A, DESSIATOUN S, et al. Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor[J]. Applied Energy, 2014, 119: 43-56. |
26 | YAO Chaoqun, ZHU Kai, LIU Yanyan, et al. Intensified CO2 absorption in a microchannel reactor under elevated pressures[J]. Chemical Engineering Journal, 2017, 319: 179-190. |
27 | LIU Hongchen, YAO Chaoqun, ZHAO Yuchao, et al. Desorption of carbon dioxide from aqueous MDEA solution in a microchannel reactor[J]. Chemical Engineering Journal, 2017, 307: 776-784. |
28 | Aghel Babak, Heidaryan Ehsan, Sahraie Sasan, et al. Application of the microchannel reactor to carbon dioxide absorption[J]. Journal of Cleaner Production, 2019, 231: 723-732. |
29 | MA Daofan, ZHU Chunying, FU Taotao, et al. Synergistic effect of functionalized ionic liquid and alkanolamines mixed solution on enhancing the mass transfer of CO2 absorption in microchannel[J]. Chemical Engineering Journal, 2021, 417: 129302. |
30 | YAO Chaoqun, DONG Zhengya, ZHAO Yuchao, et al. The effect of system pressure on gas-liquid slug flow in a microchannel[J]. AIChE Journal, 2014, 60(3): 1132-1142. |
31 | ZHAO Yuchao, CHEN Guangwen, YE Chunbo, et al. Gas-liquid two-phase flow in microchannel at elevated pressure[J]. Chemical Engineering Science, 2013, 87: 122-132. |
32 | YIN Yaran, ZHU Chunying, FU Taotao, et al. Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel[J]. Chemical Engineering Science, 2019, 201: 264-273. |
33 | ZHANG Shizhe, ZHU Chunying, FENG Huisheng, et al. Intensification of gas-liquid two-phase flow and mass transfer in microchannels by sudden expansions[J]. Chemical Engineering Science, 2021, 229: 116040. |
34 | An Eng LIM, Chun Yee LIM, LAM Yee Cheong, et al. Effect of microchannel junction angle on two-phase liquid-gas Taylor flow[J]. Chemical Engineering Science, 2019, 202: 417-428. |
35 | YANG Gang, FENG Kai, ZHANG Huichen. Pressure drop and bubble length prediction for gas-non-newtonian fluid two-phase flow in a curved microchannel[J]. Chemical Engineering Research and Design, 2023, 197: 405-418. |
36 | YAN Peng, JIN Haibo, TAO Fangfang, et al. Flow characterization of gas-liquid with different liquid properties in a Y-type microchannel using electrical resistance tomography and volume of fluid model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136: 104390. |
37 | AKBARI Mona, RAHIMI Masoud, FARYADI Mahboubeh. Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves[J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1143-1152. |
38 | VAN ELK E P, KNAAP M C, VERSTEEG G F. Application of the penetration theory for gas-liquid mass transfer without liquid bulk[J]. Chemical Engineering Research and Design, 2007, 85(4): 516-524. |
39 | HARKOU Eleana, HAFEEZ Sanaa, MANOS George, et al. CFD study of the numbering up of membrane microreactors for CO2 capture[J]. Processes, 2021, 9(9): 1515. |
40 | JIANG Bin, HE Chengxiang, ZHAN Wei, et al. Mass transfer of chemical absorption of CO2/N2 mixed gas in a microchannel[J]. Chemical Engineering Science, 2023, 280: 118996. |
41 | YANG Lixia, Karine LOUBIÈRE, DIETRICH Nicolas, et al. Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel[J]. Chemical Engineering Science, 2017, 165: 192-203. |
42 | ZHOU Yufei, YAO Chaoqun, ZHANG Peng, et al. Dynamic coupling of mass transfer and chemical reaction for Taylor flow along a serpentine microchannel[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 9279-9292. |
43 | YIN Yaran, ZHANG Xianming, ZHU Chunying, et al. Hydrodynamics and gas-liquid mass transfer in a cross-flow T-junction microchannel: Comparison of two operation modes[J]. Separation and Purification Technology, 2021, 255: 117697. |
44 | HUANG Mengmeng, ZHU Chunying, FU Taotao, et al. Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121435. |
45 | GAO Nana, WANG Jiexin, SHAO Lei, et al. Removal of carbon dioxide by absorption in microporous tube-in-tube microchannel reactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6369-6374. |
46 | Pakkawat Chalermthai, Nattee Akkarawatkhoosith, Amaraporn Kaewchada, et al. Carbon dioxide removal via absorption using artificial seawater in a microchannel for the case of CO2-rich gas[J]. Chemical Engineering and Processing: Process Intensification, 2022, 175: 108928. |
47 | YANG Lu, TAN Jing, WANG Kai, et al. Mass transfer characteristics of bubbly flow in microchannels[J]. Chemical Engineering Science, 2014, 109: 306-314. |
48 | YIN Yaran, GUO Rongwei, ZHU Chunying, et al. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles[J]. Separation and Purification Technology, 2020, 236: 116306. |
49 | ZHOU Caijin, XIE Bingqi, CHEN Junxin, et al. Enhancement of gas-liquid mass transfer in curved membrane contactors with the generation of Dean vortices[J]. Journal of Membrane Science, 2021, 636: 119592. |
50 | LIU Xuancheng, LI Hongye, SONG Yibing, et al. Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel[J]. Chinese Journal of Chemical Engineering, 2023. |
51 | LIANG Yan, CHU Guangwen, WANG Jiexin, et al. Controllable preparation of nano-CaCO3 in a microporous tube-in-tube microchannel reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 79: 34-39. |
52 | YAO Chaoqun, ZHAO Yuchao, MA Haiyun, et al. Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
53 | YAO Chaoqun, DONG Zhengya, ZHAO Yuchao, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24. |
54 | ABIEV R S. Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels[J]. Chemical Engineering Journal, 2013, 227: 66-79. |
55 | SVETLOV S D, ABIEV R S. Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 975-989. |
56 | VAN BATEN J M, KRISHNA R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12): 2535-2545. |
57 | BUTLER C, CID E, A-M BILLET. Modelling of mass transfer in Taylor flow: Investigation with the PLIF-I technique[J]. Chemical Engineering Research and Design, 2016, 115: 292-302. |
58 | ESKIN Dmitry, MOSTOWFI Farshid. A model of a bubble train flow accompanied with mass transfer through a long microchannel[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 147-155. |
59 | NIRMAL G M, LEARY T F, ARUN R. Mass transfer dynamics in the dissolution of Taylor bubbles[J]. Soft Matter, 2019, 15(13): 2746-2756. |
60 | YUE Jun, CHEN Guangwen, YUAN Quan, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
61 | ABOLHASANI Milad, KUMACHEVA Eugenia, Axel GÜNTHER. Peclet number dependence of mass transfer in microscale segmented gas-liquid flow[J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 9046-9051. |
62 | 乐军, 陈光文, 袁权, 等. 微通道内气-液传质研究[J]. 化工学报, 2006, 57(6): 1296-1303. |
YUE Jun, CHEN Guangwen, YUAN Quan, et al. Mass transfer in gas-liquid flow in microchannels[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(6):1296-1303. | |
63 | JI X Y, MA Y G, FU T T, et al. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels[J]. Brazilian Journal of Chemical Engineering, 2010, 27(4): 573-582. |
64 | CHU Chunyan, ZHANG Fanbin, ZHU Chunying, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
65 | CHENG Hao, TARLET Dominique, FAN Yilin, et al. Mass transfer enhancement for CO2 chemical absorption in a spiral baffle embedded microchannel[J]. Chemical Engineering Science, 2023, 280: 118968. |
66 | FRIES D M, WAELCHLI S, VON ROHR P R. Gas-liquid two-phase flow in meandering microchannels[J]. Chemical Engineering Journal, 2008, 135: S37-S45. |
67 | PANG Zifan, JIANG Shaokun, ZHU Chunying, et al. Mass transfer of chemical absorption of CO2 in a serpentine minichannel[J]. Chemical Engineering Journal, 2021, 414: 128791. |
68 | TAN J, LU Y C, XU J H, et al. Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chemical Engineering Journal, 2012, 181/182: 229-235. |
69 | MACINNES J M, PITT M J, PRIESTMAN G H, et al. Analysis of two-phase contacting in a rotating spiral channel[J]. Chemical Engineering Science, 2012, 69(1): 304-315. |
70 | YIN Yaran, CHEN Weiyang, WU Conghao, et al. Bubble dynamics and mass transfer enhancement in split-and-recombine (SAR) microreactor with rapid chemical reaction[J]. Separation and Purification Technology, 2022, 287: 120573. |
71 | SEO Hyeon-Seok, KIM Youn-Jea. A study on the mixing characteristics in a hybrid type microchannel with various obstacle configurations[J]. Materials Research Bulletin, 2012, 47(10): 2948-2951. |
72 | SEHGAL S, ALVARADO J L, HASSAN I G, et al. A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems[J]. Renewable and Sustainable Energy Reviews, 2021, 142: 110807. |
73 | HESSEL V, EHRFELD W, GOLBIG K, et al. Gas/liquid microreactors for direct fluorination of aromatic compounds using elemental fluorine[C]//Ehrfeld W. Microreaction Technology: Industrial Prospects. Berlin, Heidelberg: Springer, 2000: 526-540. |
74 | CHEN Yiyu, ZHU Chunying, FU Taotao, et al. Mass transfer enhancement of CO2 absorption into [Bmim][BF4] aqueous solution in microchannels by heart-shaped grooves[J]. Chemical Engineering and Processing: Process Intensification, 2021, 167: 108536. |
75 | PASHA Mohsin, LIU Saier, ZHANG Jin, et al. Recent advancements on hydrodynamics and mass transfer characteristics for CO2 absorption in microreactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12249-12268. |
76 | CHEN Jianfeng, CHEN Guizi, WANG Jiexin, et al. High-throughput microporous tube-in-tube microreactor as novel gas-liquid contactor: Mass transfer study[J]. AIChE Journal, 2011, 57(1): 239-249. |
77 | MACINNES J M, ZAMBRI M K S. Hydrodynamic characteristics of a rotating spiral fluid-phase contactor[J]. Chemical Engineering Science, 2015, 126: 427-439. |
78 | CHANDRASEKARAN Sriram, HUGHES Matthew, KINI Girish, et al. A microchannel shell-and-tube absorber for ammonia-water absorption[J]. Applied Thermal Engineering, 2021, 185: 116321. |
79 | CONG Haifeng, ZHAO Zhenyu, LI Xingang, et al. Liquid-bridge flow in the channel of helical string and its application to gas-liquid contacting process[J]. AIChE Journal, 2018, 64(9): 3360-3368. |
80 | HAN Hongming, CONG Haifeng, LI Xingang, et al. Hydraulics and mass transfer characteristics of novel helical liquid-bridge flow structured packings[J]. Chemical Engineering Science, 2021, 240: 116669. |
81 | ZHANG Zhen, HAN Hongming, CONG Haifeng, et al. Liquid-bridge flow on a vertical spiral spring and its mass transfer characteristics[J]. Chemical Engineering Science, 2023, 275: 118738. |
82 | WANG Kuang, CONG Haifeng, LI Xingang. Preparation of novel helical liquid-bridge flow structured catalyst and its catalytic performance in the hydrogenation of 2-ethyl-anthraquinone[J]. Chemical Engineering Journal, 2023, 462: 142320. |
83 | PANG Danya, CONG Haifeng, LI Xingang, et al. Liquid-bridge flow between two slender plates: Formation and fluid mechanics[J]. Chemical Engineering Research and Design, 2021, 170: 304-313. |
[1] | 刘锋, 褚阳, 李会峰, 李明丰, 朱玫, 张润强. 汽油中大分子硫醇催化转化反应过程强化[J]. 化工进展, 2024, 43(1): 279-284. |
[2] | 张梁, 马骥, 贺高红, 姜晓滨, 肖武. 膜调控的头孢呋辛钠溶析-冷却耦合结晶成核介稳区测定及分析[J]. 化工进展, 2024, 43(1): 260-268. |
[3] | 王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33. |
[4] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[5] | 翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123. |
[6] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[7] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[8] | 王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[9] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[10] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
[11] | 石一慈, 潘艳秋, 王成宇, 范嘉禾, 俞路. 焦耳效应强化气隙式膜蒸馏脱盐过程的实验研究[J]. 化工进展, 2022, 41(5): 2285-2291. |
[12] | 孙逊, 赵越, 玄晓旭, 赵珊, YOON Joon Yong, 陈颂英. 基于水力空化的化工过程强化研究进展[J]. 化工进展, 2022, 41(5): 2243-2255. |
[13] | 宋飞, 王君妍, 何林, 隋红, 李鑫钢. 表面活性剂强化重质油矿溶剂萃取残渣中残留溶剂鼓泡分离[J]. 化工进展, 2022, 41(4): 2007-2014. |
[14] | 唐思扬, 李星宇, 鲁厚芳, 钟山, 梁斌. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
[15] | 刘庆丰, 廖亚龙, 吴越, 郗家俊, 嵇广雄. 黄铜矿强化浸出研究进展[J]. 化工进展, 2022, 41(11): 6099-6110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |