化工进展 ›› 2024, Vol. 43 ›› Issue (1): 19-33.DOI: 10.16085/j.issn.1000-6613.2023-1627
王立华(), 蔡苏杭, 江文涛, 罗倩, 罗勇(), 陈建峰
收稿日期:
2023-09-14
修回日期:
2023-11-26
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
罗勇
作者简介:
王立华(1998—),男,博士研究生,研究方向为超重力催化加氢反应过程强化。E-mail:2021410010@mail.buct.edu.cn。
基金资助:
WANG Lihua(), CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong(), CHEN Jianfeng
Received:
2023-09-14
Revised:
2023-11-26
Online:
2024-01-20
Published:
2024-02-05
Contact:
LUO Yong
摘要:
相比于经典的滴流床加氢技术,液相加氢技术由于其一次性投资成本和运行能耗低,受到了企业界和学术界的广泛关注。但如何进一步强化氢油相界面的传质速率来提高液相加氢效率,仍是一个重要的难题。近年来快速发展的微纳尺度气泡或液滴的气液传质强化技术有助于油品催化加氢反应。本文以微纳气泡为例,首先总结了微纳气泡特点及产生方式,简述了微纳尺度气液传质强化液相加氢过程可行性判别,回顾了微纳尺度气液传质强化在油品液相加氢工艺中的相关研究及工业应用。最后分析了微纳尺度气液传质强化在油品液相加氢中面临的挑战以及发展方向,即微纳尺度传质与本征反应的匹配、工况条件微纳气泡在反应器中的流动以及含微纳气泡混合物的气液分离等。
中图分类号:
王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33.
WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33.
项目 | 水 | 电 | 蒸汽 | 燃料气 | 热输入 | 合计 |
---|---|---|---|---|---|---|
液相加氢 | 38.5 | 168.9 | -153.4 | 201.1 | -25.5 | 229.6 |
滴流床加氢 | 29.7 | 199.4 | 22.2 | 182.2 | -31.8 | 401.7 |
表1 泉州石化柴油液相加氢技术与滴流床加氢技术的能耗对比 (MJ/t)
项目 | 水 | 电 | 蒸汽 | 燃料气 | 热输入 | 合计 |
---|---|---|---|---|---|---|
液相加氢 | 38.5 | 168.9 | -153.4 | 201.1 | -25.5 | 229.6 |
滴流床加氢 | 29.7 | 199.4 | 22.2 | 182.2 | -31.8 | 401.7 |
研究人员 | 研究手段 | 研究体系 | 气泡特征尺寸范围/μm | 传质关联式 |
---|---|---|---|---|
Tanaka等[ | 可视化法 | Air-水/表面活性剂溶液 | 10~100 | |
Olsen等[ | 可视化法 | N2/CO2/CH4-海水 | 200~800 | |
Zeng等[ | 化学反应法 | O2-亚硫酸铵溶液 | 200~2500 | |
Bai等[ | 动态溶氧法 | O2-氯化钠溶液 | 10~100 | |
Muroyama [ | 动态溶氧法 | O2-脱氧水 | 32~40 |
表2 微纳气泡传质实验研究
研究人员 | 研究手段 | 研究体系 | 气泡特征尺寸范围/μm | 传质关联式 |
---|---|---|---|---|
Tanaka等[ | 可视化法 | Air-水/表面活性剂溶液 | 10~100 | |
Olsen等[ | 可视化法 | N2/CO2/CH4-海水 | 200~800 | |
Zeng等[ | 化学反应法 | O2-亚硫酸铵溶液 | 200~2500 | |
Bai等[ | 动态溶氧法 | O2-氯化钠溶液 | 10~100 | |
Muroyama [ | 动态溶氧法 | O2-脱氧水 | 32~40 |
项目 | Iso Therming技术 | SRH技术 | SLHT技术 | CLTH技术 | C-NUM技术 |
---|---|---|---|---|---|
研发单位 | 美国Process Dynamics | 中国石化抚顺石油化工研究院和洛阳石油化工工程公司 | 中国石化工程建设有限公司和石油化工科学研究院 | 中国石化长岭石化 | 中国石油华东设计院和中国石油大学(华东) |
操作方式 | 下行式 | 下行式 | 上行式 | 上行式 | 上行式 |
反应器内 氢气存在形式 | 溶解氢 | 溶解氢+氢气泡 | 溶解氢+氢气泡 | 溶解氢+氢气泡 | 溶解氢+氢气泡 |
循环泵 | 有 | 有 | 有 | 无 | 无 |
特点 | 优点:取消了氢气循环压缩机及循环氢净化系统,投资与能耗低;缺点:反应压力高于滴流床工艺,系统压降大,循环泵能耗增加,反应深度不足 | 优点:油品与氢气直接在管道内混合,对原料的适应性比较强;缺点:与Iso Therming技术相同 | 优点:保证了反应过程中所需的氢气量,能加工含较多氮、硫、重金属等的柴油原料;缺点:大比例二次加工油生产10mg/kg以下柴油产品时催化剂易结焦 | 优点:取消了循环油,简化了工艺流程;缺点:产品氧化安定性不合格,需要调整工艺参数,来满足产品要求 | 优点:通过反应器内构件和床层多点补氢的方式来提高溶氢和补氢能力,保证了反应深度;缺点:与CLTH技术相同 |
应用情况 | 中化泉州石化375万吨/年柴油加氢装置[ | 中石化长岭分公司20万吨/年柴油加氢装置[ | 中石化石家庄炼化公司260万吨/年柴油加氢装置[ | 中石化北海炼化50万吨/年喷气燃料加氢装置[ | 中石油庆阳石化公司40万吨/年航煤液相加氢装置[ |
表3 不同液相加氢技术对比
项目 | Iso Therming技术 | SRH技术 | SLHT技术 | CLTH技术 | C-NUM技术 |
---|---|---|---|---|---|
研发单位 | 美国Process Dynamics | 中国石化抚顺石油化工研究院和洛阳石油化工工程公司 | 中国石化工程建设有限公司和石油化工科学研究院 | 中国石化长岭石化 | 中国石油华东设计院和中国石油大学(华东) |
操作方式 | 下行式 | 下行式 | 上行式 | 上行式 | 上行式 |
反应器内 氢气存在形式 | 溶解氢 | 溶解氢+氢气泡 | 溶解氢+氢气泡 | 溶解氢+氢气泡 | 溶解氢+氢气泡 |
循环泵 | 有 | 有 | 有 | 无 | 无 |
特点 | 优点:取消了氢气循环压缩机及循环氢净化系统,投资与能耗低;缺点:反应压力高于滴流床工艺,系统压降大,循环泵能耗增加,反应深度不足 | 优点:油品与氢气直接在管道内混合,对原料的适应性比较强;缺点:与Iso Therming技术相同 | 优点:保证了反应过程中所需的氢气量,能加工含较多氮、硫、重金属等的柴油原料;缺点:大比例二次加工油生产10mg/kg以下柴油产品时催化剂易结焦 | 优点:取消了循环油,简化了工艺流程;缺点:产品氧化安定性不合格,需要调整工艺参数,来满足产品要求 | 优点:通过反应器内构件和床层多点补氢的方式来提高溶氢和补氢能力,保证了反应深度;缺点:与CLTH技术相同 |
应用情况 | 中化泉州石化375万吨/年柴油加氢装置[ | 中石化长岭分公司20万吨/年柴油加氢装置[ | 中石化石家庄炼化公司260万吨/年柴油加氢装置[ | 中石化北海炼化50万吨/年喷气燃料加氢装置[ | 中石油庆阳石化公司40万吨/年航煤液相加氢装置[ |
1 | 费华伟, 王婧, 高振宇. 2021年中国炼油工业发展状况与近期展望[J]. 国际石油经济, 2022, 30(4): 48-54, 62. |
FEI Huawei, WANG Jing, GAO Zhenyu. Review and outlook of China’s refining industry in 2021[J]. International Petroleum Economics, 2022, 30(4): 48-54, 62. | |
2 | TAN Jing, JI Yani, DENG Wensheng, et al. Process intensification in gas/liquid/solid reaction in trickle bed reactors: A review[J]. Petroleum Science, 2021, 18(4): 1203-1218. |
3 | 李大东. 加氢处理工艺与工程[M]. 北京: 中国石化出版社, 2004. |
LI Dadong. Hydrogenation process and engineering[M]. Beijing: China Petrochemical Press, 2004. | |
4 | YUAN Pei, LEI Xueqin, SUN Hongming, et al. Effects of pore size, mesostructure and aluminum modification on FDU-12 supported NiMo catalysts for hydrodesulfurization[J]. Petroleum Science, 2020, 17(6): 1737-1751. |
5 | 马守涛, 王保举, 孙发民, 等. 滴流床多相催化反应器强化技术研究进展[J]. 石油化工, 2021, 50(7): 727-731. |
MA Shoutao, WANG Baoju, SUN Famin, et al. Research progress for intensification of heterogeneous catalytic reaction in trickle bed reactors[J]. Petrochemical Technology, 2021, 50(7): 727-731. | |
6 | DU Wei, LIU Wenming, XU Jian, et al. A novel modification of vapour-lift liquid distributor[J]. The Canadian Journal of Chemical Engineering, 2014, 92(1): 109-115. |
7 | ATTA A, ROY S, NIGAM K D P. Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD[J]. Chemical Engineering Science, 2007, 62(24): 7033-7044. |
8 | MO Hanyang, YONG Yumei, YU Kang, et al. A new streamlined bubble-cap distributor for high gas-liquid ratio and the liquid distribution mechanisms[J]. The Canadian Journal of Chemical Engineering, 2023, 101(4): 2269-2285. |
9 | 王红秋. 我国炼油向化工转型现状与思考[J]. 化工进展, 2020, 39(11): 4401-4407. |
WANG Hongqiu. Status and thinking of refining to chemical transformation in China[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4401-4407. | |
10 | 马守涛, 梁宇, 郭见芳, 等. 液相加氢技术进展[J]. 石化技术与应用, 2019, 37(6): 428-432. |
MA Shoutao, LIANG Yu, GUO Jianfang, et al. Progress of liquid phase hydrogenation technology[J]. Petrochemical Technology & Application, 2019, 37(6): 428-432. | |
11 | KEY R D, ACKERSON M D, BYARS M S, et al. Isotherming—A new technology for ultra low sulfur fuels[C]. NPRA Annual Meeting, 2003. |
12 | 郭守权, 代萌. 低能耗航煤液相加氢装置改造总结[J]. 炼油技术与工程, 2021, 51(6): 1-4. |
GUO Shouquan, DAI Meng. Summary of low energy consumption jet fuel liquid phase hydrogenation unit revamping[J]. Petroleum Refinery Engineering, 2021, 51(6): 1-4. | |
13 | 刘凯祥, 阮宇红, 李浩. 连续液相加氢技术在柴油加氢精制装置的应用[J]. 石油化工设计, 2012, 29(2): 26-29, 68. |
LIU Kaixiang, RUAN Yuhong, LI Hao. Application of continuous liquid-phase hydroprocessing technology in gas oil hydrotreating unit[J]. Petrochemical Design, 2012, 29(2): 26-29, 68. | |
14 | 赵玲珑, 柯君. 全液相加氢和传统滴流床加氢的操作对比[J]. 当代化工研究, 2016(8): 36-37. |
ZHAO Linglong, KE Jun. Operation comparison of full liquid phase hydrogenation and traditional trickle bed hydrogenation[J]. Modern Chemical Research, 2016(8): 36-37. | |
15 | 李农, 李海峰, 赵新全, 等. 液相加氢技术的应用现状[J]. 化工管理, 2021(17): 66-67. |
LI Nong, LI Haifeng, ZHAO Xinquan, et al. Application status of liquid phase hydrogenation technology[J]. Chemical Enterprise Management, 2021(17): 66-67. | |
16 | 谢海群, 冯忠伟. 液相加氢技术应用现状分析[J]. 炼油与化工, 2015, 26(5): 5-8. |
XIE Haiqun, FENG Zhongwei. Application situation of liquid phase hydrogenation technology[J]. Refining and Chemical Industry, 2015, 26(5): 5-8. | |
17 | 赵旺华, 王延君, 杨帆, 等. 杜邦Iso Therming液相加氢技术在3.75 Mt/a柴油加氢装置的工业应用[J]. 炼油技术与工程, 2020, 50(5): 7-10. |
ZHAO Wanghua, WANG Yanjun, YANG Fan, et al. Industrial application of DuPont Iso Therming technology in 3.75 MM TPY diesel hydrogenation unit[J]. Petroleum Refinery Engineering, 2020, 50(5): 7-10. | |
18 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
ZHANG Zhibing, TIAN Hongzhou, ZHANG Feng, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
19 | DHANEESH K P, RANGANATHAN P. A comprehensive review on the hydrodynamics, mass transfer and chemical absorption of CO2 and modelling aspects of rotating packed bed[J]. Separation and Purification Technology, 2022, 295: 121248. |
20 | WANG Zhihong, YANG Tao, LIU Zhixi, et al. Mass transfer in a rotating packed bed: A critical review[J]. Chemical Engineering and Processing-Process Intensification, 2019, 139: 78-94. |
21 | LU Yanzhen, LIU Wei, XU Yingchun, et al. Initial liquid dispersion and mass transfer performance in a rotating packed bed[J]. Chemical Engineering and Processing-Process Intensification, 2019, 140: 136-141. |
22 | GHADYANLOU Farhad, AZARI Ahmad, VATANI Ali. A review of modeling rotating packed beds and improving their parameters: Gas liquid contact[J]. Sustainability, 2021, 13(14): 8046. |
23 | SANG Le, LUO Yong, CHU Guangwen, et al. A three-zone mass transfer model for a rotating packed bed[J]. AIChE Journal, 2019, 65(6): e16595. |
24 | SU Mengjun, LE Yuan, CHU Guangwen, et al. Intensification of droplet dispersion by using multilayer wire mesh and its application in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3584-3592. |
25 | 王甲妲, 焦真. 微纳气泡制备技术的研究进展[J]. 化工时刊, 2022, 36(5): 1-4. |
WANG Jiada, JIAO Zhen. Research progress on the preparation method of micro-nano bubbles[J]. Chemical Industry Times, 2022, 36(5): 1-4. | |
26 | AGARWAL Ashutosh, Wun Jern NG, LIU Yu. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175-1180. |
27 | TAKAHASHI Masayoshi, CHIBA Kaneo, LI Pan. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B, 2007, 111(6): 1343-1347. |
28 | SWART Bert, ZHAO Yubin, KHAKU Mohammed, et al. In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography[J]. Chemical Engineering Science, 2020, 225: 115836. |
29 | International Organization for Standardization. Fine bubble technology-measurement techniques for the characterization of fine bubbles: [S]. 2020-04-07. |
30 | KAWAHARA Akimaro, SADATOMI Michio, MATSUYAMA Fuminori, et al. Prediction of micro-bubble dissolution characteristics in water and seawater[J]. Experimental Thermal and Fluid Science, 2009, 33(5): 883-894. |
31 | SUN Le, ZHANG Fenghua, GUO Xiaoming, et al. Research progress on bulk nanobubbles[J]. Particuology, 2022, 60: 99-106. |
32 | ALHESHIBRI M, QIAN J, JEHANNIN M, et al. A history of nanobubbles[J]. Langmuir, 2016, 32(43): 11086-11100. |
33 | Václav TESAŘ. Microbubble smallness limited by conjunctions[J]. Chemical Engineering Journal, 2013, 231: 526-536. |
34 | Václav TESAŘ. Shape oscillation of microbubbles[J]. Chemical Engineering Journal, 2014, 235: 368-378. |
35 | BRITTLE Stuart, DESAI Pratik, Woon Choon NG, et al. Minimising microbubble size through oscillation frequency control[J]. Chemical Engineering Research and Design, 2015, 104: 357-366. |
36 | Václav TESAŘ. Mechanisms of fluidic microbubble generation part Ⅰ: Growth by multiple conjunctions[J]. Chemical Engineering Science, 2014, 116: 843-848. |
37 | LEE Ki Bong, CHUN Byung Hee, LEE Jae Cheol, et al. Experimental analysis of bubble mode in a plate-type absorber[J]. Chemical Engineering Science, 2002, 57(11): 1923-1929. |
38 | JUWANA Wibawa Endra, WIDYATAMA Arif, DINARYANTO Okto, et al. Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator[J]. Chemical Engineering Research and Design, 2019, 141: 436-448. |
39 | LIU Yefei, TAO Xihuan, JIANG Hong, et al. Intensification of fine apatite flotation with microbubble generation and inclined plates in the flotation column[J]. Chemical Engineering and Processing-Process Intensification, 2020, 157: 108133. |
40 | Freddy HERNANDEZ-ALVARADO, KALAGA Dinesh V, TURNEY Damon, et al. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion[J]. Chemical Engineering Science, 2017, 168: 403-413. |
41 | LI Xiangyang, DUAN Yongguang, WANG Haoliang, et al. Internal optimization for enhancing the microbubble dispersion characteristics of a stirred tank[J]. Industrial & Engineering Chemistry Research, 2022, 61(45): 16815-16822. |
42 | KULKARNI A A, JOSHI J B. Bubble formation and bubble rise velocity in gas-liquid systems: A review[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873-5931. |
43 | GAO Yawen, DASHLIBORUN A M, ZHOU J Z, et al. Formation and stability of cavitation microbubbles in process water from the oilsands industry[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 3198-3209. |
44 | TAO Xihuan, LIU Yefei, JIANG Hong, et al. Microbubble generation with shear flow on large-area membrane for fine particle flotation[J]. Chemical Engineering and Processing-Process Intensification, 2019, 145: 107671. |
45 | SHUAI Yun, WANG Xinyan, HUANG Zhengliang, et al. Bubble size distribution and rise velocity in a jet bubbling reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19271-19279. |
46 | PARMAR Rajeev, MAJUMDER Subrata Kumar. Terminal rise velocity, size distribution and stability of microbubble suspension[J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10(3): 450-465. |
47 | 郭锴, 唐小恒, 周绪美. 化学反应工程[M]. 3版. 北京: 化学工业出版社, 2017. |
GUO Kai, TANG Xiaoheng, ZHOU Xumei. Chemical reaction engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2017. | |
48 | PARMAR Rajeev, MAJUMDER Subrata Kumar. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report[J]. Chemical Engineering and Processing: Process Intensification, 2013, 64: 79-97. |
49 | WANG Kai, XIE Lisi, LU Yangcheng, et al. Generating microbubbles in a co-flowing microfluidic device[J]. Chemical Engineering Science, 2013, 100: 486-495. |
50 | TANAKA Shunya, KASTENS Sven, FUJIOKA Satoko, et al. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt[J]. Chemical Engineering Journal, 2020, 387: 121246. |
51 | WANG Zhengchao, GUO Kai, LIU Hui, et al. Effects of bubble size on the gas-liquid mass transfer of bubble swarms with Sauter mean diameters of 0.38—4.88mm in a co current upflow bubble column[J]. Journal of Chemical Technology & Biotechnology, 2020, 95: 2853-2867. |
52 | PARKINSON Luke, SEDEV Rossen, FORNASIERO Daniel, et al. The terminal rise velocity of 10—100μm diameter bubbles in water[J]. Journal of Colloid and Interface Science, 2008, 322(1): 168-172. |
53 | BREDWELL M D, WORDEN R M. Mass-transfer properties of microbubbles. 1. Experimental studies[J]. Biotechnology Progress, 1998, 14(1): 31-38. |
54 | OLSEN Jan Erik, DUNNEBIER Dorien, DAVIES Emlyn, et al. Mass transfer between bubbles and seawater[J]. Chemical Engineering Science, 2017, 161: 308-315. |
55 | HUGHMARK G A. Liquid-liquid spray column drop size, holdup, and continuous phase mass transfer[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(3): 408-413. |
56 | ZENG Wei, JIA Chao, LUO Huaxun, et al. Microbubble-dominated mass transfer intensification in the process of ammonia-based flue gas desulfurization[J]. Industrial & Engineering Chemistry Research, 2020, 59(44): 19781-19792. |
57 | BAI Mei, LIU Zhibin, ZHANG Jinpeng, et al. Prediction and experimental study of mass transfer properties of micronanobubbles[J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8291-8300. |
58 | MUROYAMA Katsuhiko, IMAI Kouhei, Yuji OKA, et al. Mass transfer properties in a bubble column associated with micro-bubble dispersions[J]. Chemical Engineering Science, 2013, 100: 464-473. |
59 | WU Yuxue, CHEN Hang, SONG Xingfu. Microbubble dispersion process intensification using novel internal baffles[J]. Industrial & Engineering Chemistry Research, 2022, 61(38): 14284-14297. |
60 | WU Yuxue, CHEN Hang, SONG Xingfu. Experimental and numerical study on the bubble dynamics and flow field of a swirl flow microbubble generator with baffle internals[J]. Chemical Engineering Science, 2022, 263: 118066. |
61 | HUANG Jiang, SUN Licheng, DU Min, et al. An investigation on the performance of a micro-scale Venturi bubble generator[J]. Chemical Engineering Journal, 2020, 386: 120980. |
62 | ZHAO Liang, SUN Licheng, MO Zhengyu, et al. Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles[J]. International Journal of Multiphase Flow, 2019, 114: 192-206. |
63 | MURAI Yuichi, TASAKA Yuji, OISHI Yoshihiko, et al. Bubble fragmentation dynamics in a subsonic Venturi tube for the design of a compact microbubble generator[J]. International Journal of Multiphase Flow, 2021, 139: 103645. |
64 | SHUAI Yun, WANG Xinyan, HUANG Zhengliang, et al. Structural design and performance of a jet-impinging type microbubble generator[J]. Industrial & Engineering Chemistry Research, 2022, 61(12): 4445-4459. |
65 | ZHOU Yefeng, KANG Panxing, HUANG Zhengliang, et al. Experimental measurement and theoretical analysis on bubble dynamic behaviors in a gas-liquid bubble column[J]. Chemical Engineering Science, 2020, 211: 115295. |
66 | KUKIZAKI Masato, BABA Yoshinari. Effect of surfactant type on microbubble formation behavior using shirasu porous glass (SPG) membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326(3): 129-137. |
67 | KHIRANI Sarah, KUNWAPANITCHAKUL Papitchaya, AUGIER Frédéric, et al. Microbubble generation through porous membrane under aqueous or organic liquid shear flow[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1997-2009. |
68 | TERASAKA Koichi, HIRABAYASHI Ai, NISHINO Takanori, et al. Development of microbubble aerator for waste water treatment using aerobic activated sludge[J]. Chemical Engineering Science, 2011, 66(14): 3172-3179. |
69 | LI Yifan, YANG Gaoqiang, YU Shule, et al. In-situ investigation and modeling of electrochemical reactions with simultaneous oxygen and hydrogen microbubble evolutions in water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(52): 28283-28293. |
70 | STRIDE Eleanor P, BROWNING Richard, RADEMEYER Paul, et al. High-throughput production of microbubble contrast agents using a sonofluidic device[J]. Journal of the Acoustical Society of America, 2016, 140(S4): 3370. |
71 | JIANG Lan, WANG Lihua, LIU Yuewei, et al. HiGee microbubble generator: (Ⅰ) Mathematical modeling and experimental verification of the energy dissipation rate[J]. Industrial & Engineering Chemistry Research, 2022, 61(45): 16823-16831. |
72 | JIANG Lan, WANG Lihua, LIAO Hailong, et al. HiGee microbubble generator: (Ⅱ) Controllable preparation of microbubbles[J]. Industrial & Engineering Chemistry Research, 2022, 61(45): 16832-16842. |
73 | JADHAV A J, FERRARO G, BARIGOU M. Generation of bulk nanobubbles using a high shear rotor stator device[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8597-8606. |
74 | HUANG Jiang, SUN Licheng, MO Zhengyu, et al. Experimental investigation on the effect of throat size on bubble transportation and breakup in small Venturi channels[J]. International Journal of Multiphase Flow, 2021, 142: 103737. |
75 | ZHAO Liang, MO Zhengyu, SUN Licheng, et al. A visualized study of the motion of individual bubbles in a Venturi-type bubble generator[J]. Progress in Nuclear Energy, 2017, 97: 74-89. |
76 | HUANG Jiang, SUN Licheng, MO Zhengyu, et al. A visualized study of bubble breakup in small rectangular Venturi channels[J]. Experimental and Computational Multiphase Flow, 2019, 1(3): 177-185. |
77 | YIN Junlian, LI Jingjing, LI Hua, et al. Experimental study on the bubble generation characteristics for an Venturi type bubble generator[J]. International Journal of Heat and Mass Transfer, 2015, 91: 218-224. |
78 | HUANG Jiang, SUN Licheng, LIU Hongtao, et al. A review on bubble generation and transportation in Venturi-type bubble generators[J]. Experimental and Computational Multiphase Flow, 2020, 2(3): 123-134. |
79 | FENG Yirong, MU Hongfeng, LIU Xi, et al. Leveraging 3D printing for the design of high-performance Venturi microbubble generators[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8447-8455. |
80 | WANG Xinyan, SHUAI Yun, ZHOU Xiaorui, et al. Performance comparison of swirl-Venturi bubble generator and conventional venturi bubble generator[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108022. |
81 | WANG Xinyan, SHUAI Yun, ZHANG Haomiao, et al. Bubble breakup in a swirl-Venturi microbubble generator[J]. Chemical Engineering Journal, 2021, 403: 126397. |
82 | TIAN Hongzhou, PI Shaofeng, FENG Yaocheng, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222. |
83 | XIE B Q, ZHOU C J, SANG L, et al. Preparation and characterization of microbubbles with a porous ceramic membrane[J]. Chemical Engineering and Processing-Process Intensification, 2021, 159: 108213. |
84 | LIN J N, BANERJI S K, YASUDA H. Role of interfacial tension in the formation and the detachment of air bubbles. 1. A single hole on a horizontal plane immersed in water[J]. Langmuir, 1994, 10(3): 936-942. |
85 | CORCHERO G, MEDINA A, HIGUERA F J. Effect of wetting conditions and flow rate on bubble formation at orifices submerged in water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290(1/2/3): 41-49. |
86 | GERLACH D, BISWAS G, DURST F, et al. Quasi-static bubble formation on submerged orifices[J]. International Journal of Heat and Mass Transfer, 2005, 48(2): 425-438. |
87 | XIE Bingqi, ZHOU Caijin, HUANG Xiaoting, et al. Microbubble generation in organic solvents by porous membranes with different membrane wettabilities[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8579-8587. |
88 | AHMED Ahmed Khaled Abdella, SUN Cuizhen, HUA Likun, et al. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure[J]. Chemosphere, 2018, 203: 327-335. |
89 | XIE Bingqi, ZHOU Caijin, CHEN Junxin, et al. Preparation of microbubbles with the generation of Dean vortices in a porous membrane[J]. Chemical Engineering Science, 2022, 247: 117105. |
90 | 刘亚朝. 旋转滴流床反应器的流体力学特性及催化加氢反应研究[D]. 北京: 北京化工大学, 2020. |
LIU Yaozhao. Hydrodynamics in a rotating trickle-bed and its process intensification for catalytic hydrogenation[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
91 | STAMATIOU I K, MULLER F L. Determination of mass transfer resistances of fast reactions in three-phase mechanically agitated slurry reactors[J]. AIChE Journal, 2017, 63(1): 273-282. |
92 | 李立权, 陈崇刚, 赵颖. 柴油加氢精制微气泡反应器工程技术开发有关问题探析[J]. 炼油技术与工程, 2021, 51(10): 6-11. |
LI Liquan, CHEN Chonggang, ZHAO Ying. Discussion on engineering technology development of micro-bubble reactor for diesel hydrorefining[J]. Petroleum Refinery Engineering, 2021, 51(10): 6-11. | |
93 | 赵颖. 柴油加氢精制装置应用微界面强化反应技术总结[J]. 炼油技术与工程, 2023, 53(3): 12-14, 31. |
ZHAO Ying. Application of microinterface mass transfer intensification technology in diesel hydrorefining[J]. Petroleum Refinery Engineering, 2023, 53(3): 12-14, 31. | |
94 | 宋军超, 李治, 李鹏程, 等. 微界面强化混合柴油加氢精制中试研究[J]. 化学工业与工程, 2023, 40(4): 50-57. |
SONG Junchao, LI Zhi, LI Pengcheng, et al. Pilot study of blended diesel hydrorefining based on micro-interfacial intensification technique[J]. Chemical Industry and Engineering, 2023, 40(4): 50-57. | |
95 | 吴梦思, 田洪舟, 丁方园, 等. 微界面强化柴油加氢脱硫过程的模拟计算研究[J]. 南京大学学报(自然科学), 2022, 58(4): 706-712. |
WU Mengsi, TIAN Hongzhou, DING Fangyuan, et al. Simulation study on micro-interface intensified diesel hydrodesulfurization process[J]. Journal of Nanjing University (Natural Science), 2022, 58(4): 706-712. | |
96 | 吴美玲. 柴油液相加氢固定床鼓泡反应器的混合传质特性及反应器模型[D]. 杭州: 浙江大学, 2017. |
WU Meiling. Mixing and mass transfer characteristics and reactor model of packed bubble column in liquid phase hydrogenation process of gasoil[D]. Hangzhou: Zhejiang University, 2017. | |
97 | WANG Lihua, JIANG Lan, LIAO Hailong, et al. A pilot-scale HiGee-aided fixed bed reactor: Size characteristics of microbubbles in diesel[J]. Industrial & Engineering Chemistry Research, 2023, 62(45): 18867-18878. |
98 | XIONG Jun, CHEN Jixiang, ZHANG Jiyan. Liquid-phase hydrogenation of o-chloronitrobenzene over supported nickel catalysts[J]. Catalysis Communications, 2007, 8(3): 345-350. |
99 | HAO Yufen, PISCHETOLA Chiara, Fernando CÁRDENAS-LIZANA, et al. Selective liquid phase hydrogenation of benzaldehyde to benzyl alcohol over alumina supported gold[J]. Catalysis Letters, 2020, 150(3): 881-887. |
100 | LI Kai, JIAO Yilai, YANG Zhenming, et al. A comparative study of Ni/Al2O3-SiC foam catalysts and powder catalysts for the liquid-phase hydrogenation of benzaldehyde[J]. Journal of Materials Science & Technology, 2019, 35(1): 159-167. |
101 | TANIELYAN S K, MORE S R, AUGUSTINE R L, et al. Continuous liquid-phase hydrogenation of 1, 4-butynediol to high-purity 1, 4-butanediol over particulate Raney nickel catalyst in a fixed bed reactor[J]. Organic Process Research & Development, 2017, 21(3): 327-335. |
102 | Alberto GONZÁLEZ-FERNÁNDEZ, PISCHETOLA Chiara, Fernando CÁRDENAS-LIZANA. Gas phase catalytic hydrogenation of C4 alkynols over Pd/Al2O3 [J]. Catalysts, 2019, 9(11): 924. |
103 | WANG Xiaodong, KEANE M. Gas phase selective hydrogenation of phenylacetylene to styrene over Au/Al2O3 [J]. Journal of Chemical Technology & Biotechnology, 2019, 94(12): 3772-3779. |
104 | PERLATA Ricardo A, HUXLEY Michael T, SHI Zhaolin, et al. A metal-organic framework supported iridium catalyst for the gas phase hydrogenation of ethylene[J]. Chemical Communications, 2020, 56(97): 15313-15316. |
105 | WANG Xiaodong, Perret Noémie, Delannoy Laurent, et al. Selective gas phase hydrogenation of nitroarenes over Mo2C-supported Au-Pd[J]. Catalysis Science & Technology, 2016, 6(18): 6932-6941. |
106 | 武钊, 蒙毅. 气相加氢与液相加氢工艺在柴油加氢中的对比分析[J]. 当代化工研究, 2016(11): 74-75. |
WU Zhao, MENG Yi. Contrastive analysis of liquid phase hydrogenation and gas phase hydrogenation in diesel fuels hydrogenation[J]. Modern Chemical Research, 2016(11): 74-75. | |
107 | 李晓倩, 关士文, 朴大文. 柴油加氢工艺路线选择[J]. 当代化工, 2020, 49(9): 2041-2043, 2062. |
LI Xiaoqian, GUAN Shiwen, PIAO Dawen. Selection of diesel hydrogenation process route[J]. Contemporary Chemical Industry, 2020, 49(9): 2041-2043, 2062. | |
108 | ACKERSON Michael D, BYARS Michael Steven. Control system method and apparatus for two phase hydroprocessing: US20060144756[P]. 2006-07-06. |
109 | 朱华兴, 张光黎, 刘兵兵, 等. 一种液相加氢反应器: CN201644076U[P]. 2010-11-24. |
ZHU Huaxing, ZHANG Guangli, LIU Bingbing, et al. Liquid-phase hydrogenated reactor: CN201644076U[P]. 2010-11-24. | |
110 | 高晓冬, 聂红, 王哲, 等. 一种生产超低硫柴油的加氢处理方法: CN102443429B[P]. 2014-07-02. |
GAO Xiaodong, NIE Hong, WANG Zhe, et al. A hydrotreatment method for the production of ultra-low sulfur diesel: CN102443429B[P]. 2014-07-02. | |
111 | 丁石, 高晓冬, 王哲, 等. 一种无氢气循环的柴油超深度脱硫方法: CN103074105B[P]. 2015-07-29. |
DING Shi, GAO Xiaodong, WANG Zhe, et al. An ultra-deep desulfurization method for diesel fuel without circulating hydrogen: CN103074105B[P]. 2015-07-29. | |
112 | 李华, 刘建平, 佘喜春, 等. 一种航空煤油液相加氢精制方法: CN103666546B[P]. 2015-09-23. |
LI Hua, LIU Jianping, SHE Xichun, et al. A liquid-phase hydrorefining method for aviation kerosene: CN103666546B[P]. 2015-09-23. | |
113 | 李华, 刘建平, 佘喜春, 等. 一种烃油加氢处理方法: CN103666547B[P]. 2015-09-23. |
LI Hua, LIU Jianping, SHE Xichun, et al. A hydrotreatment method for hydrocarbon oil: CN103666547B[P]. 2015-09-23. | |
114 | 赵秀文, 王德会, 李瑞峰, 等. 一种液相加氢装置及液相加氢方法: CN114437809A[P]. 2022-05-06. |
ZHAO Xiuwen, WANG Dehui, LI Ruifeng, et al. A liquid phase hydrogenation device and a liquid phase hydrogenation method: CN114437809A[P]. 2022-05-06. | |
115 | 徐秋鹏. 蜡油全液相加氢技术的工业应用[J]. 石油炼制与化工, 2021, 52(4): 77-81. |
XU Qiupeng. Commercial application of isotherming technology for vacuum gas oil[J]. Petroleum Processing and Petrochemicals, 2021, 52(4): 77-81. | |
116 | 谢清峰, 巢文辉, 夏登刚. SRH液相循环加氢技术工业试验[J]. 炼油技术与工程, 2012, 42(12): 12-15. |
XIE Qingfeng, CHAO Wenhui, XIA Denggang. Commercial test of SRH liquid circulation hydrogenation process[J]. Petroleum Refinery Engineering, 2012, 42(12): 12-15. | |
117 | 刘兵兵. SRH液相加氢技术在柴油加氢装置中的工业应用[J]. 广东化工, 2013, 40(4): 109-110, 122. |
LIU Bingbing. Commercial application of SRH liquid phase recycling hydrogenation technology in diesel hydrofining[J]. Guangdong Chemical Industry, 2013, 40(4): 109-110, 122. | |
118 | 徐志海. SRH柴油液相循环加氢技术在九江石化的工业应用[J]. 当代化工, 2015, 44(4): 833-836. |
XU Zhihai. Commercial application of SRH liquid products recycling hydrogenation technology in Jiujiang petrochemical company[J]. Contemporary Chemical Industry, 2015, 44(4): 833-836. | |
119 | 陶磊, 于洪滨, 牛世坤. 液相循环加氢技术在湛江东兴200万t/a柴油加氢装置生产超低硫柴油的工业应用[J]. 当代化工, 2017, 46(11): 2316-2319. |
TAO Lei, YU Hongbin, NIU Shikun. Commercial application of liquid phase hydrogenation technology in producing ultra-low-sulfur diesel in 2 Mt/a diesel hydrofining unit in Zhanjiang Dongxing petrochemical company[J]. Contemporary Chemical Industry, 2017, 46(11): 2316-2319. | |
120 | 周礼俊, 宋永一. 液相加氢工艺在航空煤油生产上的工业应用[J]. 当代化工, 2014, 43(1): 111-113, 158. |
ZHOU Lijun, SONG Yongyi. Industrial application of the liquid phase hydrogenation process in production of jet fuel[J]. Contemporary Chemical Industry, 2014, 43(1): 111-113, 158. | |
121 | 张志强. 柴油液相加氢技术的工业应用[J]. 广东化工, 2015, 42(20): 66-67. |
ZHANG Zhiqiang. Industrial application of diesel liquid phase hydrogenation technology[J]. Guangdong Chemical Industry, 2015, 42(20): 66-67. | |
122 | 李振华, 韩振强, 李第. 柴油液相循环加氢技术的工业应用[J]. 炼油技术与工程, 2017, 47(6): 15-18. |
LI Zhenhua, HAN Zhenqiang, LI Di. Commercial application of diesel liquid-phase recycle hydrogenation technology (SRH)[J]. Petroleum Refinery Engineering, 2017, 47(6): 15-18. | |
123 | 蔡建崇, 邓杨清, 李强, 等. SLHT连续液相加氢技术的工业应用[J]. 石油炼制与化工, 2018, 49(2): 40-44. |
CAI Jianchong, DENG Yangqing, LI Qiang, et al. Application of diesel continuous liquid phase hydrotreating technology[J]. Petroleum Processing and Petrochemicals, 2018, 49(2): 40-44. | |
124 | 刘凯祥, 李浩, 孙丽丽, 等. 上流式加氢反应器内连续液相的控制方法[J]. 石油炼制与化工, 2012, 43(8): 7-12. |
LIU Kaixiang, LI Hao, SUN Lili, et al. Control measures of maintaining continuous liquid-phase within up-flow hydrogenation reactor[J]. Petroleum Processing and Petrochemicals, 2012, 43(8): 7-12. | |
125 | 董晓猛. RS-2000催化剂在 2.2Mt/a柴油连续液相加氢装置上的工业应用[J]. 石油化工, 2014, 43(12): 1427-1432. |
DONG Xiaomeng. Application of RS-2000 catalyst in 2.2 Mt/a continuous liquid phase hydrogenation of diesel[J]. Petrochemical Technology, 2014, 43(12): 1427-1432. | |
126 | 郑宁来. 中国石化北海炼油化工有限责任公司建成管式液相喷气燃料加氢装置[J]. 石油炼制与化工, 2014, 45(9): 23. |
ZHENG Ninglai. China Petrochemical Beihai Refining and Chemical Co. Ltd. built a tubular liquid jet fuel hydrogenation unit[J]. Petroleum Processing and Petrochemicals, 2014, 45(9): 23. | |
127 | 郑宁来. 格尔木炼油厂建15万吨/年航煤项目[J]. 炼油技术与工程, 2017, 47(8): 44. |
ZHENG Ninglai. Construction of 150000 t/a aviation coal project in Golmud Refinery[J]. Petroleum Refinery Engineering, 2017, 47(8): 44. | |
128 | 赵秀文, 黄正梁, 王德会, 等. 加氢反应器: CN107497371B[P]. 2019-12-10. |
ZHAO Xiuwen, HUANG Zhengliang, WANG Dehui, et al. Hydrogenation reactor: CN107497371B[P]. 2019-12-10. |
[1] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[2] | 翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123. |
[3] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[6] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[7] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[10] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[11] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[12] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[13] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[14] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[15] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |