16 |
XU Ruibo, CHAKRABORTY Sumit, YUAN Hongmei, et al. Acceptorless, reversible dehydrogenation and hydrogenation of N-heterocycles with a cobalt pincer catalyst[J]. ACS Catalysis, 2015, 5(11): 6350-6354.
|
17 |
GONG Yutong, ZHANG Pengfei, XU Xuan, et al. A novel catalyst Pd@OMPG-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions[J]. Journal of Catalysis, 2013, 297: 272-280.
|
18 |
BECKERS Nicole A, HUYNH Steven, ZHANG Xiaojiang, et al. Screening of heterogeneous multimetallic nanoparticle catalysts supported on metal oxides for mono-, poly-, and heteroaromatic hydrogenation activity[J]. ACS Catalysis, 2012, 2(8): 1524-1534.
|
19 |
CHANDRA Debraj, SAINI Shikha, BHATTACHARYA Saswata, et al. Electronic effect in a ruthenium catalyst designed in nanoporous N-functionalized carbon for efficient hydrogenation of heteroarenes[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52668-52677.
|
20 |
DERAEDT Christophe, YE Rong, RALSTON Walter T, et al. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles[J]. Journal of the American Chemical Society, 2017, 139(49): 18084-18092.
|
21 |
KAR Ashish Kumar,, SRIVASTAVA Rajendra. Solvent-dependent, formic acid-mediated, selective reduction and reductive N-formylation of N-heterocyclic arenes with sustainable cobalt-embedded N-doped porous carbon catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13136-13147.
|
22 |
ZHAO Jianbo, YUAN Haifeng, QIN Xiaomei, et al. Au nanoparticles confined in SBA-15 as a highly efficient and stable catalyst for hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline[J]. Catalysis Letters, 2020, 150(10): 2841-2849.
|
23 |
WEI Zhongzhe, SHAO Fangjun, WANG Jianguo. Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles[J]. Chinese Journal of Catalysis, 2019, 40(7): 980-1002.
|
24 |
BAI Licheng, WANG Xin, CHEN Qiang, et al. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions[J]. Angewandte Chemie International Edition, 2016, 55(50): 15656-15661.
|
25 |
MILLER Jeremie J, SIGMAN Matthew S. Quantitatively correlating the effect of ligand-substituent size in asymmetric catalysis using linear free energy relationships[J]. Angewandte Chemie International Edition, 2008, 47(4): 771-774.
|
26 |
JIANG Heyan, ZHENG Xuxu. Phosphine-functionalized ionic liquid-stabilized rhodium nanoparticles for selective hydrogenation of aromatic compounds[J]. Applied Catalysis A: General, 2015, 499: 118-123.
|
27 |
MUNEYAMA E, KUNISHIGE A, OHDAN K, et al. Reduction and reoxidation of iron phosphate and its catalytic activity for oxidative dehydrogenation of isobutyric acid[J]. Journal of Catalysis, 1996, 158(2): 378-384.
|
28 |
BERGERET G, GALLEZOT P. Handbook of heretogeneous catalysis[M]. 2008, 2, 738-765.
|
1 |
TAN Khai Chen, YU Yang, CHEN Ruting, et al. Metallo-N-heterocycles—A new family of hydrogen storage material[J]. Energy Storage Materials, 2020, 26: 198-202.
|
2 |
WEI Fang, WANG Weiguo, MA Yudao, et al. Regioselective synthesis of multisubstituted 1,2,3-triazoles: Moving beyond the copper-catalyzed azide-alkyne cycloaddition[J]. Chemical Communications, 2016, 52(99): 14188-14199.
|
3 |
YAMAGUCHI Ryohei, IKEDA Chikako, TAKAHASHI Yoshinori, et al. Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species[J]. Journal of the American Chemical Society, 2009, 131(24): 8410-8412.
|
4 |
ZHANG Fengwei, MA Chunlan, CHEN Shuai, et al. N-doped hierarchical porous carbon anchored tiny Pd NPs: A mild and efficient quinolines selective hydrogenation catalyst[J]. Molecular Catalysis, 2018, 452: 145-153.
|
5 |
Rafik OMAR-AMRANI, THOMAS Antoine, BRENNER Eric, et al. Efficient nickel-mediated intramolecular amination of aryl chlorides[J]. Organic Letters, 2003, 5, 5(13): 2311-2314.
|
6 |
YAMAMOTO Hisashi, MARUOKA Keiji. Selective reactions using organoaluminum reagents[M]. Current Trends in Organic Synthesis. Amsterdam: Elsevier, 1983: 281-289.
|
7 |
HAKKI Amer, DILLERT Ralf, BAHNEMANN Detlef W. Arenesulfonic acid-functionalized mesoporous silica decorated with titania: A heterogeneous catalyst for the one-pot photocatalytic synthesis of quinolines from nitroaromatic compounds and alcohols[J]. ACS Catalysis, 2013, 3(4): 565-572.
|
8 |
ALVARADO Ysaı́as, BUSOLO Marı́a, Francisco LÓPEZ-LINARES. Regioselective homogeneous hydrogenation of quinoline by use of pyrazolyl borate ligand and transition metal complexes as a precatalyst[J]. Journal of Molecular Catalysis A: Chemical, 1999, 142(2): 163-167.
|
9 |
ROSALES Merlín, BASTIDAS Luis Jhonatan, Beatriz GONZÁLEZ, et al. Kinetics and mechanisms of homogeneous catalytic reactions. Part 11. Regioselective hydrogenation of quinoline catalyzed by rhodium systems containing 1,2-bis(diphenylphosphino) ethane[J]. Catalysis Letters, 2011, 141(9): 1305-1310.
|
10 |
LU Shengmei, HAN Xiuwen, ZHOU Yonggui. An efficient catalytic system for the hydrogenation of quinolines[J]. Journal of Organometallic Chemistry, 2007, 692(14): 3065-3069.
|
11 |
WANG Zhijian, ZHOU Haifeng, WANG Tianli, et al. Highly enantioselective hydrogenation of quinolines under solvent-free or highly concentrated conditions[J]. Green Chemistry, 2009, 11(6): 767-769.
|
12 |
ZHOU Yonggui. Asymmetric hydrogenation of heteroaromatic compounds[J]. Accounts of Chemical Research, 2007, 40(12): 1357-1366.
|
13 |
DOBEREINER Graham E, NOVA Ainara, SCHLEY Nathan D, et al. Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway[J]. Journal of the American Chemical Society, 2011, 133(19): 7547-7562.
|
14 |
XU Conghui, ZHANG Lingjuan, DONG Chaonan, et al. Iridium-catalyzed transfer hydrogenation of 1,10-phenanthrolines using formic acid as the hydrogen source[J]. Advanced Synthesis & Catalysis, 2016, 358(4): 567-572.
|
15 |
TU Xifeng, GONG Liuzhu. Highly enantioselective transfer hydrogenation of quinolines catalyzed by gold phosphates: Achiral ligand tuning and chiral-anion control of stereoselectivity[J]. Angewandte Chemie International Edition, 2012, 51(45): 11346-11349.
|
29 |
BARAN E J, BOTTO I L, NORD A G. The vibrational spectrum and the conformation of the P2O4-7 anion in Fe2P2O7 [J]. Journal of Molecular Structure, 1986, 143: 151-154.
|
30 |
SONG Yanning, YANG Shoufeng, ZAVALIJ Peter Y, et al. Temperature-dependent properties of FePO4 cathode materials[J]. Materials Research Bulletin, 2002, 37(7): 1249-1257.
|
31 |
GADGIL M M, KULSHRESHTHA S K. Study of FePO4 catalyst[J]. Journal of Solid State Chemistry, 1994, 111(2): 357-364.
|
32 |
ULASEVICH Sviatlana A, BREZESINSKI Gerald, MOHWALD Helmuth, et al. Light-induced water splitting causes high-amplitude oscillation of pH-sensitive layer-by-layer assemblies on TiO2 [J]. Angewandte Chemie International Edition, 2016, 55(42): 13001-13004.
|
33 |
Zara WENG-SIEH, GRONSKY Ronald, BELL Alexis T. Microstructural evolution of γ-alumina-supported Rh upon aging in air[J]. Journal of Catalysis, 1997, 170(1): 62-74.
|
34 |
JANAMPELLI Sagar, DARBHA Srinivas. Metal oxide-promoted hydrodeoxygenation activity of platinum in Pt-MO x /Al2O3 catalysts for green diesel production[J]. Energy & Fuels, 2018, 32(12): 12630-12643.
|