化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1328-1341.DOI: 10.16085/j.issn.1000-6613.2023-0477
• 工业催化 • 上一篇
李伟杰(), 康金灿, 张传明, 林丽娜, 李昌鑫, 朱红平()
收稿日期:
2023-03-28
修回日期:
2023-06-05
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
朱红平
作者简介:
李伟杰(1998—),男,硕士研究生,研究方向为多相催化。E-mail:weijieli@stu.xmu.edu.cn。
基金资助:
LI Weijie(), KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping()
Received:
2023-03-28
Revised:
2023-06-05
Online:
2024-03-10
Published:
2024-04-11
Contact:
ZHU Hongping
摘要:
采用蒸氨法制备了锆(Zr)改性的Cu/SiO2催化剂,用于3-羟基丙酸甲酯(3-HMP)气相加氢制1,3-丙二醇(1,3-PDO)。采用比表面积及孔分布测试、XRD、ICP-OES、H2-TPR、NH3-TPD、CO2-TPD、FTIR、TG-DTG、HRTEM、XPS和AES等手段对催化剂进行了详细表征,发现Zr物种的加入使得Cu和Zr物种之间发生了强相互作用,产生了较多的层状硅酸铜,在结构方面提高了催化剂的比表面积,降低了铜物种的粒径,促进铜物种的分散,且在电子调控方面提高了Cu+的含量,增强了催化剂吸附酰基和甲氧基的能力。与未改性的Cu/SiO2催化剂相比,在相同反应条件下,Zr掺杂量为0.5%的Cu/SiO2催化剂表现出更高的催化性能,获得3-羟基丙酸甲酯转化率为96.0%和1,3-丙二醇选择性为84.3%,1,3-PDO的总收率达80.9%。这是目前在高液时空速0.10h-1的条件下取得的最佳结果。
中图分类号:
李伟杰, 康金灿, 张传明, 林丽娜, 李昌鑫, 朱红平. 锆改性Cu/SiO2催化剂催化3-羟基丙酸甲酯选择性加氢[J]. 化工进展, 2024, 43(3): 1328-1341.
LI Weijie, KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping. Selective hydrogenation of methyl 3-hydroxypropionate over zirconium-modified Cu/SiO2 catalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1328-1341.
催化剂 | Cu质量分数/% | Zr质量分数/% | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | Cu粒径①/nm | Cu粒径②/nm |
---|---|---|---|---|---|---|---|
30Cu/SiO2 | 31.0 | 0 | 295.3 | 6.0 | 0.43 | 5.5 | 5.4 |
30Cu-0.1Zr/SiO2 | 31.0 | 0.10 | 311.5 | 5.7 | 0.45 | 5.8 | 5.8 |
30Cu-0.25Zr/SiO2 | 29.9 | 0.24 | 336.3 | 5.4 | 0.46 | 5.7 | 5.6 |
30Cu-0.5Zr/SiO2 | 30.9 | 0.50 | 358.6 | 5.1 | 0.46 | 5.2 | 4.9 |
30Cu-1Zr/SiO2 | 29.6 | 0.97 | 341.6 | 5.3 | 0.45 | 5.5 | 5.4 |
30Cu-2Zr/SiO2 | 29.5 | 1.89 | 326.7 | 5.7 | 0.46 | 5.8 | 6.1 |
30Cu/ZrO2③ | 29.3 | 50.2 | 19.5 | 21.0 | 0.10 | 18.7 | — |
ZrO2 | 0 | 75.1 | 5.8 | 9.4 | 0.02 | — | — |
表1 不同Zr掺杂量催化剂的组成和结构结果
催化剂 | Cu质量分数/% | Zr质量分数/% | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | Cu粒径①/nm | Cu粒径②/nm |
---|---|---|---|---|---|---|---|
30Cu/SiO2 | 31.0 | 0 | 295.3 | 6.0 | 0.43 | 5.5 | 5.4 |
30Cu-0.1Zr/SiO2 | 31.0 | 0.10 | 311.5 | 5.7 | 0.45 | 5.8 | 5.8 |
30Cu-0.25Zr/SiO2 | 29.9 | 0.24 | 336.3 | 5.4 | 0.46 | 5.7 | 5.6 |
30Cu-0.5Zr/SiO2 | 30.9 | 0.50 | 358.6 | 5.1 | 0.46 | 5.2 | 4.9 |
30Cu-1Zr/SiO2 | 29.6 | 0.97 | 341.6 | 5.3 | 0.45 | 5.5 | 5.4 |
30Cu-2Zr/SiO2 | 29.5 | 1.89 | 326.7 | 5.7 | 0.46 | 5.8 | 6.1 |
30Cu/ZrO2③ | 29.3 | 50.2 | 19.5 | 21.0 | 0.10 | 18.7 | — |
ZrO2 | 0 | 75.1 | 5.8 | 9.4 | 0.02 | — | — |
催化剂 | XPS结合能/eV | XAES动能/eV | |||
---|---|---|---|---|---|
Cu2p1/2 | Cu2p3/2 | Cu+ | Cu0 | ||
30Cu | 952.3 | 932.2 | 914.0 | 918.0 | 38.2 |
30Cu-0.1Zr | 952.3 | 932.2 | 914.0 | 918.0 | 41.2 |
30Cu-0.25Zr | 952.5 | 932.4 | 914.0 | 918.0 | 42.2 |
30Cu-0.5Zr | 952.6 | 932.5 | 914.0 | 918.0 | 49.2 |
30Cu-1Zr | 952.5 | 932.5 | 914.0 | 918.0 | 45.2 |
30Cu-2Zr | 952.6 | 932.7 | 914.0 | 918.0 | 44.9 |
30Cu/ZrO2 | 953.0 | 933.0 | 914.0 | 918.0 | 44.7 |
表2 不同Zr掺杂量的催化剂还原后的XPS和Cu LMM XAES反卷积结果
催化剂 | XPS结合能/eV | XAES动能/eV | |||
---|---|---|---|---|---|
Cu2p1/2 | Cu2p3/2 | Cu+ | Cu0 | ||
30Cu | 952.3 | 932.2 | 914.0 | 918.0 | 38.2 |
30Cu-0.1Zr | 952.3 | 932.2 | 914.0 | 918.0 | 41.2 |
30Cu-0.25Zr | 952.5 | 932.4 | 914.0 | 918.0 | 42.2 |
30Cu-0.5Zr | 952.6 | 932.5 | 914.0 | 918.0 | 49.2 |
30Cu-1Zr | 952.5 | 932.5 | 914.0 | 918.0 | 45.2 |
30Cu-2Zr | 952.6 | 932.7 | 914.0 | 918.0 | 44.9 |
30Cu/ZrO2 | 953.0 | 933.0 | 914.0 | 918.0 | 44.7 |
1 | 杨金纯, 郭盈. PTT纤维的研究现状与应用前景[J]. 天津纺织科技, 2004, 42(4): 6-10. |
YANG Jinchun, GUO Ying. PTT fibers’ present situation of research and prospect of applications[J]. Tianjin Textile Science & Technology, 2004, 42(4): 6-10. | |
2 | LEE Byeong No, CHEN Byung Soon. Process for preparing 1,3-alkanediol from epoxide derivative: EP1122235[P]. 2002-12-11. |
3 | 朱红平, 赵金波, 洪永顺, 等. 一种有机金属催化剂及使用其制备3-羟基丙酸酯的方法: CN114345414A[P]. 2022-04-15. |
ZHU Hongping, ZHAO Jinbo, HONG Yongshun, et al. A method for preparing 3-hydroxypropionic ester using an organometallic catalyst: CN114345414A[P]. 2022-04-15. | |
4 | 赖恩义, 周雨婷, 李伟杰, 等. 3-羟基丙酸甲酯加氢合成1,3-丙二醇反应的热力学计算[J]. 厦门大学学报(自然科学版), 2023, 62(1): 31-38. |
LAI Enyi, ZHOU Yuting, LI Weijie, et al. Thermodynamic calculation of the synthesis of 1,3-propanediol by hydrogenation of methyl 3-hydroxypropionate[J]. Journal of Xiamen University (Natural Science), 2023, 62(1): 31-38. | |
5 | GONG Jinlong, YUE Hairong, ZHAO Yujun, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925. |
6 | ZHENG Jianwei, HUANG Lele, CUI Cunhao, et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2 [J]. Science, 2022, 376(6590): 288-292. |
7 | YANG Wenting, LI Antai, YANG Youwei, et al. Low-temperature hydrogenation of methyl acetate to ethanol over a Manganese-modified Cu/SiO2 catalyst[J]. Industrial & Engineering Chemistry Research, 2022, 61(32): 11718-11726. |
8 | FORSCHNER T C, WEIDER P R, SLAUGH L H, et al. Process for preparing 1,3-propanediol from methyl 3 -hydroxypropionate: US6191321[P]. 2001-02-20. |
9 | FORSCHNER T C, POWELL J B, SLAUGH L H, et al. Process for preparing 1,3-propanediol from methyl 3 -hydroxypropionate: WO0018712[P]. 2000-04-06. |
10 | 李秉鲁, 张银珠, 李正浩, 等. 由3-羟基酯制备1,3 -链烷二醇的方法: CN1355160A[P]. 2002-06-26. |
LEE Byeong No, JANG Eun Joo, LEE Jung Ho. Method for preparation of 1,3-alkamediol by 3-carboxy ester: CN1355160A[P]. 2002-06-26. | |
11 | LEE Byeong No, LEE Jung Ho, JANG Eun Joo, et al. Process for preparing 1,3-alkandiols from 3-hydroxyesters, EP 1211234[P]. 2002-06-05. |
12 | 冯看卡. 3-羟基丙酸甲酯加氢制1,3-丙二醇研究[D]. 青岛: 青岛科技大学, 2008. |
FENG Kanka. Study on the hydrogenation of methyl 3-hydroxypropionate to 1,3-propanediol[D]. Qingdao: Qingdao University of Science & Technology, 2008. | |
13 | YING Yuzhou, FENG Kanka, Zhiguo LYU, et al. Study on nano copper-based catalysts for the hydrogenation of methyl 3-hydroxypropionate to 1,3-propanediol[J]. Surface Review and Letters, 2009, 16(3): 343-349. |
14 | 巩亚. 3-羟基丙酸甲酯催化加氢制备1,3-丙二醇研究[D]. 上海: 复旦大学, 2012. |
GONG Ya. Study on catalytic hydrogenation of methyl 3-hydroxypropionate to 1,3-propanediol[D]. Shanghai: Fudan University, 2012. | |
15 | 赖恩义. 掺杂负载型金属催化剂及其3-HMP催化加氢性能研究[D]. 厦门: 厦门大学, 2021. |
LAI Enyi. Study on catalytic hydrogenation of methyl 3-hydroxypropionate over dopping supported metal catalysts[D]. Xiamen: Xiamen University, 2021. | |
16 | REN Zhiheng, YOUNIS M N, ZHAO Hui, et al. Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1612-1622. |
17 | ZHAO Yujun, SHAN Bin, WANG Yue, et al. An effective CuZn-SiO2 bimetallic catalyst prepared by hydrolysis precipitation method for the hydrogenation of methyl acetate to ethanol[J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4526-4534. |
18 | YU Xue, ZHU Wanchun, GAO Shuang, et al. Transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts modified by ZrO2 [J]. Chemical Research in Chinese Universities, 2013, 29(5): 986-990. |
19 | WANG Denghao, ZHANG Chuancai, ZHU Mingyuan, et al. Highly active and stable ZrO2-SiO2-supported Cu-catalysts for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. ChemistrySelect, 2017, 2(17): 4823-4829. |
20 | ZHAO Yujun, ZHANG Huanhuan, XU Yuxi, et al. Interface tuning of Cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst[J]. Journal of Energy Chemistry, 2020, 49: 248-256. |
21 | 徐晨阳, 常苏杰, 吴涛, 等. Cu-xZrO2/SiO2改性催化剂对醋酸甲酯制乙醇性能的影响[J]. 天然气化工(C1化学与化工), 2020, 45(5): 47-52. |
XU Chenyang, CHANG Sujie, WU Tao, et al. Effect of Cu-xZrO2/SiO2 modified catalyst on the performance of methyl acetate to ethanol[J]. Natural Gas Chemical Industry, 2020, 45(5): 47-52. | |
22 | LI Feng, LU Chunshan, LI Xiaonian. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters, 2014, 25(11): 1461-1465. |
23 | YIN Anyuan, GUO Xiuying, DAI Weilin, et al. Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Applied Catalysis A: General, 2008, 349(1/2): 91-99. |
24 | ZHAO Yujun, ZHANG Yaqing, WANG Yue, et al. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation[J]. Applied Catalysis A: General, 2017, 539: 59-69. |
25 | HUANG Zhiwei, CUI Fang, XUE Jingjing, et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16104-16113. |
26 | VAN DER GRIFT C J G, ELBERSE P A, MULDER A, et al. Preparation of silica-supported copper-catalysts by means of deposition-precipitation[J]. Applied Catalysis, 1990, 59(1): 275-289. |
27 | 李竹霞, 钱志刚, 赵秀阁, 等. 草酸二甲酯加氢Cu/SiO2催化剂前体的研究[J]. 华东理工大学学报(自然科学版), 2004, 30(6): 613-617. |
LI Zhuxia, QIAN Zhigang, ZHAO Xiuge, et al. Research on the precursor of catalyst Cu/SiO2 for hydrogenation of dimethyl oxalate[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2004, 30(6): 613-617. | |
28 | TOUPANCE T, KERMAREC M, LOUIS C. Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments[J]. The Journal of Physical Chemistry B, 2000, 104(5): 965-972. |
29 | VAN DER GRIFT C J G, WIELERS A F H, JOGH B P J, et al. Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles[J]. Journal of Catalysis, 1991, 131(1): 178-189. |
30 | JIANG Jiawei, TU Cheng-Chieh, CHEN Chaohuang, et al. Highly selective silica-supported copper catalysts derived from copper phyllosilicates in the hydrogenation of adipic acid to 1,6-hexanediol[J]. ChemCatChem, 2018, 10(23): 5449-5458. |
31 | 杨文龙, 赵玉军, 王胜平, 等. 铜硅催化剂中层状硅酸铜的形成过程[J]. 化学工业与工程, 2016, 33(1): 1-5. |
YANG Wenlong, ZHAO Yujun, WANG Shengping, et al. Formation of copper phyllosilicate in silica supported copper catalyst[J]. Chemical Industry and Engineering, 2016, 33(1): 1-5. | |
32 | 谢璇. 醋酸甲酯加氢制乙醇的研究[D]. 上海: 上海师范大学, 2013. |
XIE Xuan. Study on hydrogenation of methyl acetate to ethanol[D]. Shanghai: Shanghai Normal University, 2013. | |
33 | SHU Guoqiang, MA Kui, TANG Siyang, et al. Highly selective hydrogenation of diesters to ethylene glycol and ethanol on aluminum-promoted CuAl/SiO2 catalysts[J]. Catalysis Today, 2019, 368, 173-180. |
34 | KIM Dohyung, RESASCO J, YU Yi, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nature Communications, 2014, 5(1): 4948. |
35 | ZHAO Yujun, LI Siming, WANG Yue, et al. Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Engineering Journal, 2017, 313: 759-768. |
36 | YAO Dawei, WANG Yue, LI Ying, et al. A high-performance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres[J]. ACS Catalysis, 2018, 8(2): 1218-1226. |
37 | WANG, Yue, LIAO Junyu, ZHANG Jian, et al. Hydrogenation of methyl acetate to ethanol by Cu/ZnO catalyst encapsulated in SBA-15[J]. AIChE Journal, 2017, 63(7): 2839-2849. |
38 | XU Yuxi, KONG Lingxin, HUANG Huijiang, et al. Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Catalysis Science & Technology, 2021, 11(20): 6854-6865. |
39 | 刘淑芝, 徐培强, 李瑞达. 助剂La对Ni/γ-Al2O3催化剂加氢性能的影响[J]. 青岛科技大学学报(自然科学版), 2016, 37(4): 388-391. |
LIU Shuzhi, XU Peiqiang, LI Ruida. Effect of La on Ni/γ-Al2O3 catalyst in benzene hydrogenation[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2016, 37(4): 388-391. | |
40 | HUANG Ying, ARIGA H, ZHENG Xinlei, et al. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2013, 307: 74-83. |
41 | MARCHI A J, FIERRO J L G, SANTAMARÍA J, et al. Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: A study of the activity evolution and reactivation of the catalyst[J]. Applied Catalysis A: General, 1996, 142(2): 375-386. |
42 | CHEN Liangfeng, GUO Pingjun, QIAO Minghua, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
43 | RESENDE K A, TELES C A, JACOBS Gary, et al. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance[J]. Applied Catalysis B: Environmental, 2018, 232: 213-231. |
44 | ZHENG Xinlei, LIN Haiqiang, ZHENG Jianwei, et al. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catalysis, 2013, 3(12): 2738-2749. |
45 | SHAO Yuewen, SUN Kai, LI Qingyin, et al. Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1,4-pentanediol[J]. Green Chemistry, 2019, 21(16): 4499-4511. |
46 | ZHU Yifeng, ZHU Yulei, DING Guoqiang, et al. Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support[J]. Applied Catalysis A: General, 2013, 468: 296-304. |
47 | CHEN Zhen, LIU Qian, GUO Lei, et al. The promoting mechanism of in situ Zr doping on the hydrothermal stability of Fe-SSZ-13 catalyst for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2021, 286: 119816. |
48 | BACHILLER-BAEZA B, RODRIGUEZ-RAMOS I, GUERRERO-RUIZ A. Interaction of carbon dioxide with the surface of zirconia polymorphs[J]. Langmuir, 1998, 14(13): 3556-3564. |
49 | ZHANG Yanfei, ZHONG Liangshu, WANG Hui, et al. Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation[J]. Journal of CO2 Utilization, 2016, 15: 72-82. |
50 | PAVEL O D, TICHIT D, I-C MARCU. Acido-basic and catalytic properties of transition-metal containing Mg-Al hydrotalcites and their corresponding mixed oxides[J]. Applied Clay Science, 2012, 61: 52-58. |
51 | WU Xuemei, TAN Minghui, XU Bing, et al. Tuning the crystallite size of monoclinic ZrO2 to reveal critical roles of surface defects on m-ZrO2 catalyst for direct synthesis of isobutene from syngas[J]. Chinese Journal of Chemical Engineering, 2021, 35: 211-219. |
52 | LU Jinzhao, YANG Lijun, XU Bolian, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2): 613-621. |
53 | CUI Guoqing, MENG Xiaoyu, ZHANG Xi, et al. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites[J]. Applied Catalysis B: Environmental, 2019, 248: 394-404. |
54 | WANG Sheng, FANG Yue, HUANG Zhen, et al. The effects of the crystalline phase of zirconia on C—O activation and C—C coupling in converting syngas into aromatics[J]. Catalysts, 2020, 10(2): 262. |
55 | HUANG Jingjing, DING Tong, MA Kui, et al. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming[J]. ChemCatChem, 2018, 10(17): 3862-3871. |
56 | ZHU Yifeng, KONG Xiao, CAO Dongbo, et al. The rise of calcination temperature enhances the performance of Cu catalysts: Contributions of support[J]. ACS Catalysis, 2014, 4(10): 3675-3681. |
57 | XI Yushan, WANG Yue, YAO Dawei, et al. Impact of the oxygen vacancies on copper electronic state and activity of Cu-based catalysts in the hydrogenation of methyl acetate to ethanol[J]. ChemCatChem, 2019, 11(11): 2607-2614. |
58 | AI Peipei, TAN Minghui, YAMANE N, et al. Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol[J]. Chemistry—A European Journal, 2017, 23(34): 8252-8261. |
59 | GONG Xiaoxiao, WANG Meiling, FANG Huihuang, et al. Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters[J]. Chemical Communications, 2017, 53(51): 6933-6936. |
60 | YUE Hairong, ZHAO Yujun, ZHAO Shuo, et al. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J]. Nature Communications, 2013, 4(1): 2339. |
61 | WANG Zhiqiao, XU Zhongning, PENG Siyan, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. |
62 | MEYER C I, MARCHI A J, MONZON A, et al. Deactivation and regeneration of Cu/SiO2 catalyst in the hydrogenation of maleic anhydride. Kinetic modeling[J]. Applied Catalysis A: General, 2009, 367(1/2): 122-129. |
63 | ZHAO Yujun, KONG Lingxin, XU Yuxi, et al. Deactivation mechanism of Cu/SiO2 catalysts in the synthesis of ethylene glycol via methyl glycolate hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12381-12388. |
[1] | 张鹏飞, 严张艳, 任亮, 张奎, 梁家林, 赵广乐, 张璠玢, 胡志海. C |
[2] | 谷星朋, 马红钦, 刘嘉豪. 雷尼镍的磷量子点改性及其催化加氢脱硫性能[J]. 化工进展, 2024, 43(3): 1293-1301. |
[3] | 陈风, 王宣德, 黄伟, 王晓东, 王琰. HZSM-22的粒径调控及Pt/HZSM-22的正十二烷加氢异构催化性能[J]. 化工进展, 2024, 43(3): 1309-1317. |
[4] | 萧垚鑫, 张军, 单锐, 袁浩然, 陈勇. Pt/CaO材料催化糠醇加氢制备戊二醇[J]. 化工进展, 2024, 43(3): 1318-1327. |
[5] | 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 氧化铝基加氢脱硫催化剂研究进展[J]. 化工进展, 2024, 43(2): 948-961. |
[6] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[7] | 王立华, 蔡苏杭, 江文涛, 罗倩, 罗勇, 陈建峰. 微纳尺度气液传质强化油品催化加氢反应[J]. 化工进展, 2024, 43(1): 19-33. |
[8] | 孙进, 陈晓贞, 刘名瑞, 刘丽, 牛世坤, 郭蓉. 加氢脱硫催化剂钠中毒失活机理[J]. 化工进展, 2024, 43(1): 407-413. |
[9] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[12] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[13] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[14] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[15] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |