化工进展 ›› 2024, Vol. 43 ›› Issue (2): 948-961.DOI: 10.16085/j.issn.1000-6613.2023-0311
陈晓贞(), 刘丽(), 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇
收稿日期:
2023-03-02
修回日期:
2023-07-31
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
刘丽
作者简介:
陈晓贞(1991—),女,博士,研究方向为馏分油加氢精制催化剂。E-mail:chenxiaozhen.fshy@sinopec.com。
基金资助:
CHEN Xiaozhen(), LIU Li(), YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu
Received:
2023-03-02
Revised:
2023-07-31
Online:
2024-02-25
Published:
2024-03-07
Contact:
LIU Li
摘要:
加氢脱硫催化剂是加氢脱硫技术中不可或缺的部分,其中氧化铝负载的硫化态催化剂作为典型的加氢脱硫催化剂在工业生产中应用十分广泛。本文系统介绍了氧化铝基硫化态催化剂的研究进展,包括硫化态加氢脱硫催化剂活性相模型以及各种类型的助剂对加氢脱硫催化剂构效关系的影响。着重探讨了包括5种经典模型在内的活性相模型研究进展情况以及差异性和关联性;同时对各种类型(过渡金属以及包括ⅠA、ⅡA、ⅢA等在内的主族元素等)的助剂对加氢脱硫催化剂构效关系的影响进行了探讨。最后对加氢脱硫催化剂的未来发展方向进行了展望,指出从原子尺度上洞察催化剂的活性相结构、形态及其复杂的催化机理,结合对催化机理以及活性相的深刻认识,可控创制性能可调的高活性及选择性的多功能催化剂是未来加氢脱硫催化剂的重要方向。
中图分类号:
陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 氧化铝基加氢脱硫催化剂研究进展[J]. 化工进展, 2024, 43(2): 948-961.
CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of alumina-supported hydrodesulfurization catalyst[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961.
1 | KOBER T, H-W SCHIFFER, DENSING M, et al. Global energy perspectives to 2060—WEC’s World Energy Scenarios 2019[J]. Energy Strategy Reviews, 2020, 31:100523. |
2 | CHANDRA Srivastava Vimal. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. RSC Advances, 2012, 2(3): 759-783. |
3 | SHAFIQ Iqrash, SHAFIQUE Sumeer, AKHTER Parveen, et al. Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review[J]. Catalysis Reviews, 2020, 64(1): 1-86. |
4 | 张俊逸, 王伟, 陈光. 国Ⅵ汽油质量升级技术分析及应对措施[J]. 当代化工, 2021, 50(11): 2656-2661. |
ZHANG Junyi, WANG Wei, CHEN Guang. Technical analysis and countermeasures of Ⅵ gasoline quality upgrade[J]. Contemporary Chemical Industry, 2021, 50(11): 2656-2661. | |
5 | WENG Xiaoyi, CAO Liyuan, ZHANG Guohao, et al. Ultradeep hydrodesulfurization of diesel: Mechanisms, catalyst design strategies, and challenges[J]. Industrial & Engineering Chemistry Research, 2020, 59(49): 21261-21274. |
6 | 李硕, 刘熠斌, 冯翔, 等. MoS2基催化剂加氢脱硫反应活性相和作用机理研究进展[J]. 化工进展, 2019, 38(2): 867-875. |
LI Shuo, LIU Yibin, FENG Xiang, et al. Research progress in active phase structure and reaction mechanism of MoS2-based catalysts for hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 867-875. | |
7 | KONG Desheng, WANG Haotian, Judy J CHA, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Letters, 2013, 13(3): 1341-1347. |
8 | BESENBACHER F, BRORSON M, CLAUSEN B S, et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects[J]. Catalysis Today, 2008, 130(1): 86-96. |
9 | LAURITSEN J V, BOLLINGER M V, LÆGSGAARD E, et al. Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts[J]. Journal of Catalysis, 2004, 221(2): 510-522. |
10 | Rik V MOM, LOUWEN Jaap N, FRENKEN Joost W M, et al. In situ observations of an active MoS2 model hydrodesulfurization catalyst[J]. Nature Communications, 2019, 10(1): 2546. |
11 | VAN VEEN J A R, COLIJN H A, HENDRIKS P A J M, et al. On the formation of type Ⅰ and type Ⅱ NiMoS phases in NiMo/Al2O3 hydrotreating catalysts and its catalytic implications[J]. Fuel Processing Technology, 1993, 35(1/2): 137-157. |
12 | NIE Hong, LI Huifeng, YANG Qinghe, et al. Effect of structure and stability of active phase on catalytic performance of hydrotreating catalysts[J]. Catalysis Today, 2018, 316: 13-20. |
13 | HENSEN E J M, DE BEER V H J, VAN VEEN J A R, et al. A refinement on the notion of type Ⅰ and Ⅱ (Co)MoS phases in hydrotreating catalysts[J]. Catalysis Letters, 2002, 84(1): 59-67. |
14 | VOGELGSANG Ferdinand, SHI Hui, LERCHER Johannes A. Toward quantification of active sites and site-specific activity for polyaromatics hydrogenation on transition metal sulfides[J]. Journal of Catalysis, 2021, 403:98-110. |
15 | STANISLAUS Antonymuthu, COOPER Barry H. Aromatic hydrogenation catalysis: A review[J]. Catalysis Reviews, 1994, 36(1): 75-123. |
16 | LAURITSEN J V, BESENBACHER F. Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts [J]. Journal of Catalysis, 2015, 328: 49-58. |
17 | CRISTOL Sylvain, PAUL Jean-François, PAYEN Edmond, et al. DBT derivatives adsorption over molybdenum sulfide catalysts: A theoretical study[J]. Journal of Catalysis, 2004, 224(1): 138-147. |
18 | YANG Shan Hsi, SATTERFIELD Charles N. Some effects of sulfiding of a NiMo/Al2O3 catalyst on its activity for hydrodenitrogenation of quinoline[J]. Journal of Catalysis, 1983, 81(1): 168-178. |
19 | SATTERFIELD Charles N. YANG Shan Hsi, Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Effect of hydrogen sulfide[J] Industrial & Engineering Chemistry Process Design and Development, 1984, 23(1): 11-19. |
20 | Henrik TOPSØE, CLAUSEN Bjerne S, Nan-Yu TOPSØE, et al. Progress in the design of hydrotreating catalysts based on fundamental molecular insight[M]//Catalysts in Petroleum Refining 1989, Proceedings of the Conference on Catalysts in Petroleum Refining. Amsterdam: Elsevier, 1989: 77-102. |
21 | MORALES-VALENCIA Edgar M, CASTILLO-ARAIZA Carlos O, GIRALDO Sonia A, et al. Kinetic assessment of the simultaneous hydrodesulfurization of dibenzothiophene and the hydrogenation of diverse polyaromatic structures[J]. ACS Catalysis, 2018, 8(5): 3926-3942. |
22 | DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The “Rim-Edge” Model[J]. Journal of Catalysis, 1994, 149(2): 414-427. |
23 | HUANG Meng, HUANG Wenbin, LI Anqi, et al. Effect of gallium as an additive over corresponding Ni-Mo/γ-Al2O3 catalysts on the hydrodesulfurization performance of 4,6-DMDBT[J]. Frontiers in Chemistry, 2022, 10: 865375. |
24 | RAJENDRAN Antony, CUI Tianyou, FAN Hongxia, et al. High-performance NiMoS hydrodesulfurization catalysts by one-pot hydrothermal synthesis using Ni(acac)2 for sulfur-free liquid fuels[J]. Fuel Processing Technology, 2022, 227: 107101. |
25 | HANG Cen, LI Ping, LIU Xinyi, et al. Morphology-performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2018, 556: 20-28. |
26 | CHEN W, LONG X, LI M, et al. Influence of active phase structure of CoMo/Al2O3 catalyst on the selectivity of hydrodesulfurization and hydrodearomatization[J]. Catalysis Today, 2017, 292: 97-109. |
27 | CAO Jing, XIA Jing, ZHANG Yicen, et al. Influence of the alumina crystal phase on the performance of CoMo/Al2O3 catalysts for the selective hydrodesulfurization of fluid catalytic cracking naphtha[J]. Fuel, 2021, 289: 119843. |
28 | DELMON Bernard. Advances in hydropurification catalysts and catalysis[J]. Studies in Surface Science and Catalysis, 1989, 53: 1-40. |
29 | ASUA J M, DELMON B. Separation of the kinetic terms in catalytic reactions with varying number of active sites (case of the remote control model)[J]. Applied Catalysis, 1984, 12(2): 249-262. |
30 | RAMOS Manuel, BERHAULT Gilles, FERRER Domingo A, et al. HRTEM and molecular modeling of the MoS2-Co9S8 interface: Understanding the promotion effect in bulk HDS catalysts[J]. Catalysis Science & Technology, 2012, 2(1): 164-178. |
31 | LIU Bin, LIU Lei, WANG Zhonget al. Effect of hydrogen spillover in selective hydrodesulfurization of FCC gasoline over the CoMo catalyst[J]. Catalysis Today, 2017, 282: 214-221. |
32 | WANG Pengcheng, LIU Jun, LIU Guo, et al. Precise tuning the CoMoO x /Al2O3 and CoMoSx/Al2O3 interfacial structures for efficient hydrodesulfurization of dibenzothiophene[J]. Fuel, 2021, 301: 121042. |
33 | BAI Xiaowan, LI Qiang, SHI Li, et al. Edge promotion and basal plane activation of MoS2 catalyst by isolated Co atoms for hydrodesulfurization and hydrodenitrogenation[J]. Catalysis Today, 2020, 350: 56-63. |
34 | QU Lianglong, ZHANG Weiping, KOOYMAN Patricia J, et al. MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica-alumina supports[J]. Journal of Catalysis, 2003, 215(1): 7-13. |
35 | BADOGA Sandeep, DALAI Ajay K, ADJAYE John, et al. Combined effects of EDTA and heteroatoms (Ti, Zr, and Al) on catalytic activity of SBA-15 supported NiMo catalyst for hydrotreating of heavy gas oil[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2137-2156. |
36 | TANIMU Abdulkadir, ALHOOSHANI Khalid. Advanced hydrodesulfurization catalysts: A review of design and synthesis[J]. Energy & Fuels, 2019, 33(4): 2810-2838. |
37 | SUN Mingyong, NICOSIA Daniele, PRINS Roel. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis[J]. Catalysis Today, 2003, 86(1-4): 173-189. |
38 | OLIVIERO Laetitia, Francoise MAUGÉ, AFANASIEV Pavel, et al. Organic additives for hydrotreating catalysts: A review of main families and action mechanisms[J]. Catalysis Today, 2021, 377(1): 3-16. |
39 | NAVARRO YERGA Rufino M, PAWELEC Barbara, MOTA Noelia, et al. Hydrodesulfurization of dibenzothiophene over Ni-Mo-W sulfide catalysts supported on sol-gel Al2O3-CeO2 [J]. Materials, 2022, 15(19): 6780. |
40 | LÓPEZ-BENÍTEZ A, BERHAULT G, GUEVARA-LARA A. NiMo catalysts supported on Mn-Al2O3 for dibenzothiophene hydrodesulfurization application[J]. Applied Catalysis B: Environmental, 2017, 213(15): 28-41. |
41 | YAN Rixin, LIU Xiangqi, LIU Jixing, et al. Modulating the active phase structure of NiMo/Al2O3 by La modification for ultra-deep hydrodesulfurization of diesel[J]. AIChE Journal, 2023, 69(2): e17873. |
42 | DANILEVICH V V, NADEINA K A, E Yu GERASIMOV, et al. Synthesis and characterization of lanthanum-modified pseudoboehmite — The precursor of alumina supports and catalysts[J]. Microporous and Mesoporous Materials, 2022, 335: 111800. |
43 | PURON Holda, PINILLA Jose Luis, SARAEV Andrey A, et al. Hydroprocessing of Maya vacuum residue using a NiMo catalyst supported on Cr-doped alumina[J]. Fuel, 2020, 263: 116717. |
44 | GONZÁLEZ-ILDELFONSO M, ESCOBAR J, GORDILLO-CRUZ E, et al. RuS2-modified NiW/Al2O3 catalysts for refractory 4,6-dimethyl-dibenzothiophene hydrodesulfurization[J]. Materials Chemistry and Physics, 2022, 278: 125568. |
45 | WEI Qiang, HUANG Wenbin, LIU Xiaodong, et al. Rhenium modification on NiMo/Al2O3 catalyst and effects on the hydrodesulfurization reaction route selectivity of 4,6-dimethyldibenzothiophene[J]. Catalysis Today, 2023, 407: 281-290. |
46 | ANDONOVA S, VLADOV Ch, PAWELEC B, et al. Effect of the modified support γ-Al2O3-CaO on the structure and hydrodesulfurization activity of Mo and Ni-Mo catalysts[J]. Applied Catalysis A: General, 2007, 328(2): 201-209. |
47 | ISHUTENKO D, NIKULSHIN P, PIMERZIN A. Relation between composition and morphology of K(Co)MoS active phase species and their performances in hydrotreating of model FCC gasoline[J]. Catalysis Today, 2016, 271:16-27. |
48 | CHEN Ligang, XU Yuan, WANG Baohuanet al. Mg-modified CoMo/Al2O3 with enhanced catalytic activity for the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Catalysis Communications, 2021, 155: 106316. |
49 | ALTAMIRANO Efraín, DE LOS REYES José Antonio, MURRIETA Florentino, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Co(Ni)MoS2 catalysts supported on alumina: Effect of gallium as an additive[J]. Catalysis Today, 2008, 133/134/135: 292-298. |
50 | DÍAZ DE LEÓN J N, PICQUART M, MASSIN L, et al. Hydrodesulfurization of sulfur refractory compounds: Effect of gallium as an additive in NiWS/γ-Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2012, 363/364: 311-321. |
51 | ZHOU Wenwu, ZHANG Yanan, TAO Xiujuan, et al. Effects of gallium addition to mesoporous alumina by impregnation on dibenzothiophene hydrodesulfurization performances of the corresponding NiMo supported catalysts[J]. Fuel, 2018, 228: 152-163. |
52 | DE CANIO Elaine C, WEISSMAN Jeffrey G. FT-IR analysis of borate-promoted Ni-Mo/Al2O3 hydrotreating catalysts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 105(1): 123-132. |
53 | SAIH Youssef, SEGAWA Kohichi. Catalytic activity of CoMo catalysts supported on boron-modified alumina for the hydrodesulphurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Applied Catalysis A: General, 2009, 353(2): 258-265. |
54 | LEWANDOWSKI M, SARBAK Z. The effect of boron addition on hydrodesulfurization and hydrodenitrogenation activity of NiMo/Al2O3 catalysts[J]. Fuel, 2000, 79(5): 487-495. |
55 | SHANG Hui, GUO Chong, YE Pengfei, et al. Synthesis of boron modified CoMo/Al2O3 catalyst under different heating methods and its gasoline hydrodesulfurization performance[J].Frontiers of Chemical Science and Engineering, 2021, 15(5): 1088-1098. |
56 | KAZAKOVA Mariya A, VATUTINA Yulia V, PROSVIRIN Igor P, et al. Boosting hydrodesulfurization activity of CoMo/Al2O3 catalyst via selective graphitization of alumina surface[J]. Microporous and Mesoporous Materials, 2021, 317: 111008. |
57 | AL-HAMMADI Saddam A, AL-AMER Adnan M, SALEH Tawfik A. Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions[J]. Chemical Engineering Journal, 2018, 345: 242-251. |
58 | SALEH Tawfik A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes[J]. Chemical Engineering Journal, 2021, 404: 126987. |
59 | NADEINA K A, DANILEVICH V V, KAZAKOV M O, et al. Silicon doping effect on the properties of the hydrotreating catalysts of FCC feedstock pretreatment[J]. Applied Catalysis B: Environmental, 2021, 280: 119415. |
60 | VATUTINA Y V, KLIMOV O V, STOLYAROVA E A, et al. Influence of the phosphorus addition ways on properties of CoMo-catalysts of hydrotreating[J]. Catalysis Today, 2019, 329: 13-23. |
61 | USMAN, YAMAMOTO Tomoya, KUBOTA Takeshi, et al. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene[J]. Applied Catalysis A: General, 2007, 328(2): 219-225. |
62 | DORNELES DE MELLO Matheus, DE ALMEIDA BRAGGIO Flávia, COSTA MAGALHÃES Bruno DA, et al. Kinetic modeling of deep hydrodesulfurization of dibenzothiophenes on NiMo/alumina catalysts modified by phosphorus[J]. Fuel Processing Technology, 2018, 177: 66-74. |
63 | ZHANG Cen, ZHANG Yicen, ZHENG Huiting, et al. Improving both the activity and selectivity of CoMo/δ-Al2O3 by phosphorous modification for the hydrodesulfurization of fluid catalytic cracking naphtha[J]. Energy & Fuels, 2022, 36(7): 3825-3834. |
64 | ZHANG Ge, YANG Fan, XU Zhusonget al. Electronic structure regulation of CoMoS catalysts by N,P co-doped carbon modification for effective hydrodesulfurization[J]. Fuel, 2022, 322: 124160. |
65 | LO´PEZ CORDERO R, ESQUIVEL N, LA´ZARO J, et al. Effect of phosphorus on molybdenum-based hydrotreating catalysts I. Characterization of the oxidic state of P-MO/Al2O3 systems[J]. Applied Catalysis, 1989, 48(2): 341-352. |
66 | DECANIO Elaine C, EDWARDS John C, SCALZO Thomas R, et al. FT-IR and solid-state NMR investigation of phosphorus promoted hydrotreating catalyst precursors[J]. Journal of Catalysis, 1991, 132(2): 498-511. |
67 | GARCIA DE CASTRO Ricardo, BERTRAND Jérémy, RIGAUD Baptiste, et al. Surface-dependent activation of model α-Al2O3-supported P-doped hydrotreating catalysts prepared by spin coating[J]. Chemistry:A European Journal, 2020, 26(64): 14623-14638. |
68 | KWAK Chan, MOON Sangheup. Effect of the fluorine-addition order on the hydrodesulfurization activity of fluorinated NiW/ Al2O3 catalysts[J]. Korean Journal of Chemical Engineering, 1999, 16(5): 608-613. |
69 | KIM Heeyeon, LEE Jung Joon, MOON Sang Heup. Hydrodesulfurization of dibenzothiophene compounds using fluorinated NiMo/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2003, 44(4): 287-299. |
70 | ZHANG Weiping, SUN Mingyong, PRINS Roel. Multinuclear MAS NMR identification of fluorine species on the surface of fluorinated γ-alumina[J]. The Journal of Physical Chemistry B, 2002, 106(45): 11805-11809. |
71 | ZHANG Weiping, SUN Mingyong, PRINS Roel. A high-resolution MAS NMR study of the structure of fluorinated NiW/γ-Al2O3 hydrotreating catalysts[J]. The Journal of Physical Chemistry B, 2003, 107(40): 10977-10982. |
72 | SONG Chan ju, KWAK Chan, MOON Sang Heup. Effect of fluorine addition on the formation of active species and hydrotreating activity of NiWS/Al2O3 catalysts[J]. Catalysis Today, 2002, 74(3/4): 193-200. |
73 | SUN Mingyong, BUSSELL Mark E, PRINS Roel. The role of fluorine, nickel and full sulfidation in the hydrodenitrogenation of o-toluidine over tungsten-based catalysts prepared from oxy-and thiosalts[J]. Applied Catalysis A: General, 2001, 216(1/2): 103-115. |
74 | Květa JIRÁTOVÁ, KRAUS Milan. Effect of support properties on the catalytic activity of HDS catalysts[J]. Applied Catalysis, 1986, 27(1): 21-29. |
[1] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[2] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[3] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[4] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[5] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[6] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[7] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[8] | 孙进, 陈晓贞, 刘名瑞, 刘丽, 牛世坤, 郭蓉. 加氢脱硫催化剂钠中毒失活机理[J]. 化工进展, 2024, 43(1): 407-413. |
[9] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[10] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
[11] | 王棵旭, 张香平, 王红岩, 柏䶮, 王慧. 电流响应催化剂及其强化典型反应的研究进展[J]. 化工进展, 2024, 43(1): 49-59. |
[12] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[13] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[14] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[15] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |