化工进展 ›› 2024, Vol. 43 ›› Issue (1): 246-259.DOI: 10.16085/j.issn.1000-6613.2023-0937
• 专栏:化工过程强化 • 上一篇
衡霖宇1,2(), 邓卓然2,3, 程道建2,3(), 魏彬1,2, 赵利强4
收稿日期:
2023-06-07
修回日期:
2023-09-02
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
程道建
作者简介:
衡霖宇(2000—),男,硕士研究生,研究方向为化工过程及装备。E-mail:L18234722057@163.com。
HENG Linyu1,2(), DENG Zhuoran2,3, CHENG Daojian2,3(), WEI Bin1,2, ZHAO Liqiang4
Received:
2023-06-07
Revised:
2023-09-02
Online:
2024-01-20
Published:
2024-02-05
Contact:
CHENG Daojian
摘要:
催化剂性能受制备过程多种因素影响,为优化催化剂制备配方与工艺条件,通常需要大量人工操作的实验试错过程,由此造成的低效率与低精度不可避免。在机械自动化控制水平不断发展的背景下,高通量合成装置的研发与投用将提升实验制备催化剂过程的效率、精度与安全性。本综述从金属催化剂常用的合成方法(包括浸渍法、离子交换法、化学气相沉积法和沉淀沉积法)出发,阐述了薄膜沉积法、微流控技术、自动合成机器人、喷墨打印法等高通量合成装置如何协助强化催化材料制备过程和加速催化剂配方优化进程。本文将着重分析金属催化剂制备工艺的需求与高通量合成装置特征之间的一一对应关系。金属催化剂合成过程对高通量合成技术的需求日益增加,构建一种与合成工艺相适配、实用的金属催化剂高通量合成平台,可以为催化剂的研究带来巨大的推动力。
中图分类号:
衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259.
HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259.
1 | SENKAN S. Combinatorial heterogeneous catalysis―A new path in an old field[J]. Angewandte Chemie International Edition, 2001, 40(2): 312-329. |
2 | SCHÜTH F, BUSCH O, HOFFMANN C, et al. High-throughput experimentation in oxidation catalysis[J]. Topics in Catalysis, 2002, 21(1): 55-66. |
3 | WILDONGER R A, DEEGAN T L, LEE J W. Is combinatorial chemistry on the right track for drug discovery?[J]. Journal of Automated Methods & Management in Chemistry, 2003, 25(3): 57-61. |
4 | MCFARLAND E W, WEINBERG W H. Combinatorial approaches to materials discovery[J]. Trends in Biotechnology, 1999, 17(3): 107-115. |
5 | ROSENFELD A, LEVKIN P A. High-throughput combinatorial synthesis of stimuli-responsive materials[J]. Advanced Biosystems, 2019, 3(3): 1800293. |
6 | SCHUMACHER E F, WENDELBO R. Automated imaging of combinatorial chemistry synthesis arrays in a large chamber low vacuum SEM[J]. Microscopy and Microanalysis, 2001, 7(S2): 1076-1077. |
7 | HAGEMEYER A, JANDELEIT B, LIU Yumin, et al. Applications of combinatorial methods in catalysis[J]. Applied Catalysis A: General, 2001, 221(1/2): 23-43. |
8 | KUMAR G, BOSSERT H, MCDONALD D, et al. Catalysis-in-a-box: Robotic screening of catalytic materials in the time of COVID-19 and beyond[J]. Matter, 2020, 3(3): 805-823. |
9 | WEIDENHOF B, REISER M, STÖWE K, et al. High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts[J]. Journal of the American Chemical Society, 2009, 131(26): 9207-9219. |
10 | LIU Xiaorui, LIU Bin, DING Jia, et al. Building a library for catalysts research using high-throughput approaches[J]. Advanced Functional Materials, 2022, 32(1): 2107862. |
11 | MATSUBARA M, SUZUMURA A, OHBA N, et al. Identifying superionic conductors by materials informatics and high-throughput synthesis[J]. Communications Materials, 2020, 1: 5. |
12 | POTYRAILO R A, MIRSKY V M. Combinatorial and high-throughput development of sensing materials: The first 10 years[J]. Chemical Reviews, 2008, 108(2): 770-813. |
13 | HUANG Zeng, WANG Chenxue, SU Qian, et al. Structure optimization of a pipetting device to improve the insertion effect of tips[J]. Mechanical Sciences, 2021, 12(1): 501-510. |
14 | RENOM-CARRASCO M, LEFORT L. Ligand libraries for high throughput screening of homogeneous catalysts[J]. Chemical Society Reviews, 2018, 47(13): 5038-5060. |
15 | LIU Yihao, HU Ziheng, SUO Zhiguang, et al. High-throughput experiments facilitate materials innovation: A review[J]. Science China Technological Sciences, 2019, 62(4): 521-545. |
16 | WATTS P, HASWELL S J. The application of micro reactors for organic synthesis[J]. Chemical Society Reviews, 2005, 34(3): 235-246. |
17 | CHIGHINE A, SECHI G, BRADLEY M. Tools for efficient high-throughput synthesis[J]. Drug Discovery Today, 2007, 12(11/12): 459-464. |
18 | GUO Shaojun, WANG Erkang. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264. |
19 | JIN Rongchao. The impacts of nanotechnology on catalysis by precious metal nanoparticles[J]. Nanotechnology Reviews, 2012, 1(1): 31-56. |
20 | ARAI T, KONISHI Y, IWASAKI Y, et al. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors[J]. Journal of Combinatorial Chemistry, 2007, 9(4): 574-581. |
21 | DENG Zhuoran, ZHAO Liqiang, CHENG Daojian. A high-throughput catalyst synthesis system for Ag-based catalysts[J]. Review of Scientific Instruments, 2022, 93(11): 114101. |
22 | YAMADA Y, AKITA T, UEDA A, et al. Instruments for preparation of heterogeneous catalysts by an impregnation method[J]. Review of Scientific Instruments, 2005, 76(6): 062226. |
23 | CONG P, DEHESTANI A, DOOLEN R, et al. Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20): 11077-11080. |
24 | LIU Yumin, CONG Peijun, DOOLEN R D, et al. High-throughput synthesis and screening of V-Al-Nb and Cr-Al-Nb oxide libraries for ethane oxidative dehydrogenation to ethylene[J]. Catalysis Today, 2000, 61(1-4): 87-92. |
25 | SAALFRANK J W, MAIER W F. Doping, selection and composition spreads, a combinatorial strategy for the discovery of new mixed oxide catalysts for low-temperature CO oxidation[J]. Comptes Rendus Chimie, 2004, 7(5): 483-494. |
26 | SELIM S, KEVIN K, SUKRU O, et al. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry[J]. Angewandte Chemie International Edition, 1999, 38(18): 2794-2799. |
27 | BERGH S, GUAN Shenheng, HAGEMEYER A, et al. Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system[J]. Applied Catalysis A: General, 2003, 254(1): 67-76. |
28 | TOPALOV A A, KATSOUNAROS I, MEIER J C, et al. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing[J]. Review of Scientific Instruments, 2011, 82(11): 114103. |
29 | Kwang Seok OH, PARK Yong Ki, Seong Ihl WOO. Highly reliable 64-channel sequential and parallel tubular reactor system for high-throughput screening of heterogeneous catalysts[J]. Review of Scientific Instruments, 2005, 76(6): 062219. |
30 | JAYARAMAN S, S-H BAECK, JARAMILLO T F, et al. Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol[J]. Review of Scientific Instruments, 2005, 76(6): 062227. |
31 | HOOGENBOOM R, SCHUBERT U S. High-throughput synthesis equipment applied to polymer research[J]. Review of Scientific Instruments. 2005;76(6):062202(1-7. |
32 | HERNÁNDEZ-PICHARDO M L, MONTOYA J A, DEL ANGEL P, et al. A comparative study of the WO x dispersion on Mn-promoted tungstated zirconia catalysts prepared by conventional and high-throughput experimentation[J]. Applied Catalysis A: General, 2008, 345(2): 233-240. |
33 | PESCARMONA P P, JANSSEN K P F, JACOBS P A. Novel transition-metal-free heterogeneous epoxidation catalysts discovered by means of high-throughput experimentation[J]. Chemistry: A European Journal, 2007, 13(23): 6562-6572. |
34 | WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
35 | LIU Yanwu, LI Gang. A power-free, parallel loading microfluidic reactor array for biochemical screening[J]. Scientific Reports, 2018, 8(1): 1-9. |
36 | NGUYEN H V, KIM K Y, NAM H, et al. Centrifugal microfluidic device for the high-throughput synthesis of Pd@AuPt core-shell nanoparticles to evaluate the performance of hydrogen peroxide generation[J]. Lab on a Chip, 2020, 20(18): 3293-3301. |
37 | NIU Guangda, ZHANG Lei, RUDITSKIY A, et al. A droplet-reactor system capable of automation for the continuous and scalable production of noble-metal nanocrystals[J]. Nano Letters, 2018, 18(6): 3879-3884. |
38 | HU Yang, LIU Bin, WU Yating, et al. Facile high throughput wet-chemical synthesis approach using a microfluidic-based composition and temperature controlling platform[J]. Frontiers in Chemistry, 2020, 8: 579828. |
39 | NIU Guangda, RUDITSKIY A, VARA M, et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors[J]. Chemical Society Reviews, 2015, 44(16): 5806-5820. |
40 | KIM Yun Ho, ZHANG Lei, YU Taekyung, et al. Droplet-based microreactors for continuous production of palladium nanocrystals with controlled sizes and shapes[J]. Small, 2013, 9(20): 3462-3467. |
41 | ZHANG Lei, NIU Guangda, LU Ning, et al. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors[J]. Nano Letters, 2014, 14(11): 6626-6631. |
42 | SANTANA J S, KOCZKUR K M, SKRABALAK S E. Synthesis of core@shell nanostructures in a continuous flow droplet reactor: Controlling structure through relative flow rates[J]. Langmuir, 2017, 33(24): 6054-6061. |
43 | GURAM A, HAGEMEYER A, LUGMAIR C G, et al. Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis[J]. Advanced Synthesis & Catalysis, 2004, 346(2/3): 215-230. |
44 | MOON Hyoseung, JEONG Seok Jae, LEE Yun Tack, et al. Preparation of a water-based Al/Fe/Mo catalyst using a microfluidic system[J]. Chemistry Letters, 2010, 39(8): 814-815. |
45 | ZHOU Jianhua, ZENG Jie, GRANT J, et al. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies[J]. Small, 2011, 7(23): 3308-3316. |
46 | CARBONELL C, STYLIANOU K C, HERNANDO J, et al. Femtolitre chemistry assisted by microfluidic pen lithography[J]. Nature Communications, 2013, 4(1): 1-7. |
47 | JIN Si Hyung, JEONG Heon-Ho, LEE Byungjin, et al. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval[J]. Lab on a Chip, 2015, 15(18): 3677-3686. |
48 | CHENG Yue, ZHANG Xiaozhang, CAO Yuan, et al. Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers[J]. Applied Materials Today, 2018, 13: 116-125. |
49 | SERP P, KALCK P, FEURER R. Chemical vapor deposition methods for the controlled preparation of supported catalytic materials[J]. Chemical Reviews, 2002, 102(9): 3085-3128. |
50 | CAUSSAT B, VAHLAS C. CVD and powders: A great potential to create new materials[J]. Chemical Vapor Deposition, 2007, 13(9): 443-445. |
51 | SENKAN S M, OZTURK S. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry[J]. Angewandte Chemie International Edition, 1999, 38(6): 791-795. |
52 | RAR A, FRAFJORD J J, FOWLKES J D, et al. PVD synthesis and high-throughput property characterization of Ni-Fe-Cr alloy libraries[J]. Measurement Science and Technology, 2005, 16(1): 46-53. |
53 | MÜLLER C M, SOLOGUBENKO A S, GERSTL S S A, et al. Nanoscale Cu/Ta multilayer deposition by co-sputtering on a rotating substrate. Empirical model and experiment[J]. Surface and Coatings Technology, 2016, 302: 284-292. |
54 | MAO S S. High throughput growth and characterization of thin film materials[J]. Journal of Crystal Growth, 2013, 379: 123-130. |
55 | LÖBEL R, THIENHAUS S, SAVAN A, et al. Combinatorial fabrication and high-throughput characterization of a Ti-Ni-Cu shape memory thin film composition spread[J]. Materials Science and Engineering: A, 2008, 481/482: 151-155. |
56 | THIENHAUS S, NAUJOKS D, PFETZING-MICKLICH J, et al. Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: A case study for the system Ni-Al[J]. ACS Combinatorial Science, 2014, 16(12): 686-694. |
57 | MOTEMANI Y, KHARE C, SAVAN A, et al. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition[J]. Nanotechnology, 2016, 27(49): 495604. |
58 | XIANG Xiaodong, WANG Gang, ZHANG Xiaokun, et al. Individualized pixel synthesis and characterization of combinatorial materials chips[J]. Engineering, 2015, 1(2): 225-233. |
59 | XING Hui, ZHAO Bingbing, WANG Yujie, et al. Rapid construction of Fe-Co-Ni composition-phase map by combinatorial materials chip approach[J]. ACS Combinatorial Science, 2018, 20(3): 127-131. |
60 | DECKER P, NAUJOKS D, LANGENKÄMPER D, et al. High-throughput structural and functional characterization of the thin film materials system Ni-Co-Al[J]. ACS Combinatorial Science, 2017, 19(10): 618-624. |
61 | COOPER J S, MCGINN P J. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode[J]. Journal of Power Sources, 2006, 163(1): 330-338. |
62 | COOPER J S, MCGINN P J. Combinatorial screening of fuel cell cathode catalyst compositions[J]. Applied Surface Science, 2007, 254(3): 662-668. |
63 | COOPER J S, JEON Min Ku, MCGINN P J. Combinatorial screening of ternary Pt-Ni-Cr catalysts for methanol electro-oxidation[J]. ElectroChemistry Communications, 2008, 10(10): 1545-1547. |
64 | JEON Min Ku, COOPER J S, MCGINN P J. Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach[J]. Journal of Power Sources, 2008, 185(2): 913-916. |
65 | ZHANG Yuan, MCGINN P J. Combinatorial screening for methanol oxidation catalysts in alloys of Pt, Cr, Co and V[J]. Journal of Power Sources, 2012, 206: 29-36. |
66 | MCGINN P J. Combinatorial electrochemistry—Processing and characterization for materials discovery[J]. Materials Discovery, 2015, 1: 38-53. |
67 | S-H BAECK, JARAMILLO T F, KLEIMAN-SHWARSCTEIN A, et al. Automated electrochemical synthesis and characterization of TiO2 supported Au nanoparticle electrocatalysts[J]. Measurement Science and Technology, 2005, 16(1): 54-59. |
68 | JIANG Chunping, WANG Ruilin, PARKINSON B A. Combinatorial approach to improve photoelectrodes based on BiVO4 [J]. ACS Combinatorial Science, 2013, 15(12): 639-645. |
69 | HABER J A, CAI Yun, JUNG Suho, et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis[J]. Energy & Environmental Science, 2014, 7(2): 682-688. |
70 | CHEN Lei, BAO Jun, GAO Chen, et al. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system[J]. Journal of Combinatorial Chemistry, 2004, 6(5): 699-702. |
71 | CHAN Tingshan, KANG Chia-Chen, LIU Rushi, et al. Combinatorial study of the optimization of Y2O3: Bi, Eu red phosphors[J]. Journal of Combinatorial Chemistry, 2007, 9(3): 343-346. |
72 | OKAMURA S, TAKEUCHI R, SHIOSAKI T. Fabrication of ferroelectric Pb(Zr,Ti)O3Thin films with various Zr/Ti ratios by ink-jet printing[J]. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 11B): 6714-6717. |
73 | BHARATHAN J, YANG Yang. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo[J]. Applied Physics Letters, 1998, 72(21): 2660-2662. |
74 | CHEN Lei, CHEN Kuoju, LIN Chunche, et al. Combinatorial approach to the development of a single mass YVO4: Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes[J]. Journal of Combinatorial Chemistry, 2010, 12(4): 587-594. |
75 | WANG Jian, MOHEBI M M, EVANS J R G. Two methods to generate multiple compositions in combinatorial ink-jet printing of ceramics[J]. Macromolecular Rapid Communications, 2005, 26(4): 304-309. |
76 | WANG Jian, EVANS J R G. Library preparation using an aspirating-dispensing ink-jet printer for combinatorial studies in ceramics[J]. Journal of Materials Research, 2005, 20(10): 2733-2740. |
77 | CHEN Lei, LUO Anqi, ZHANG Yao, et al. Optimization of the single-phased white phosphor of Li2SrSiO4: Eu2+, Ce3+ for light-emitting diodes by using the combinatorial approach assisted with the Taguchi method[J]. ACS Combinatorial Science, 2012, 14(12): 636-644. |
78 | HABER J A, GUEVARRA D, JUNG S, et al. Discovery of new oxygen evolution reaction electrocatalysts by combinatorial investigation of the Ni-La-Co-Ce oxide composition space[J]. ChemElectroChem, 2014, 1(10): 1613-1617. |
79 | ANIKETA S, JONES R J R, DAN G, et al. High-throughput screening for acid-stable oxygen evolution electrocatalysts in the (Mn-Co-Ta-Sb)O[J]. Electrocatalysis, 2015, 6(2): 229-236. |
80 | LIU Xiaonao, SHEN Yi, YANG Ruoting, et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration[J]. Nano Letters, 2012, 12(11): 5733-5739. |
81 | REICHENBACH H M, MCGINN P J. Combinatorial solution synthesis and characterization of complex oxide catalyst powders based on the LaMO3 system[J]. Applied Catalysis A: General, 2003, 244(1): 101-114. |
82 | MOHAMED D K B, YU Xingjian, LI Jiesheng, et al. Reaction screening in continuous flow reactors[J]. Tetrahedron Letters, 2016, 57(36): 3965-3977. |
83 | GUTMANN B, CANTILLO D, KAPPE C O. Continuous-flow technology―A tool for the safe manufacturing of active pharmaceutical ingredients[J]. Angewandte Chemie International Edition, 2015, 54(23): 6688-6728. |
84 | HARTMAN R L, MCMULLEN J P, JENSEN K F. Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis[J]. Angewandte Chemie International Edition, 2011, 50(33): 7502-7519. |
85 | DE BELLEFON C, TANCHOUX N, CARAVIEILHES S, et al. Microreactors for dynamic, high throughput screening of fluid/liquid molecular catalysis[J]. Angewandte Chemie, 2000, 112(19): 3584-3587. |
[1] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[2] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[3] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[4] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[5] | 李文鹏, 刘晴, 杨志荣, 高展鹏, 王景涛, 周鸣亮, 张金利. 液相剥离法高效制备石墨烯的研究进展[J]. 化工进展, 2024, 43(1): 215-231. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[8] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[9] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[10] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[11] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[12] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[13] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[14] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[15] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |