1 |
LI Xin, YU Jiaguo, Jaroniec Mietek, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179.
|
2 |
CHU Steven. Carbon capture and sequestration[J]. Science, 2009, 325(5948): 1599.
|
3 |
WANG Zhoujun, SONG Hui, LIU Huimin, et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects[J]. Angewandte Chemie International Edition, 2020, 59(21): 8016-8035.
|
4 |
WANG Changli, LV Zunhang, YANG Wenxiu, et al. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction[J]. Chemical Society Reviews, 2023,52(4): 1382-1427.
|
5 |
HU Canyu, CHEN Xing, Jingxiang LOW, et al. Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon[J]. Nature Communications, 2023, 14: 221.
|
6 |
ADACHI Taiki, KITAZUMI Yuki, SHIRAI Osamu, et al. Recent progress in applications of enzymatic bioelectrocatalysis[J]. Catalysts, 2020, 10(12): 1413.
|
7 |
GERARDO Grasso, DANIELA Zane, ROBERTO Dragone. Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications[J]. Nanomaterials, 2019, 10(1): 11.
|
8 |
YUAN Lan, QI Mingyu, TANG Zirong, et al. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(39): 21150-21172.
|
9 |
霍景沛, 林冲, 陈桂煌. 光催化二氧化碳还原催化体系研究进展[J]. 化学推进剂与高分子材料, 2020, 18(3): 8-14.
|
|
HUO Jingpei, LIN Chong, CHEN Guihuang. Research progress in photocatalytic reduction catalyst system of carbon dioxide[J]. Chemical Propellants & Polymeric Materials, 2020, 18(3): 8-14.
|
10 |
GUO Zhenguo, CHEN Gui, COMETTO Claudio, et al. Selectivity control of CO versus HCOO-production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites[J]. Nature Catalysis, 2019, 2(9): 801-808.
|
11 |
TAKEDA Hiroyuki, COMETTO Claudio, ISHITANI Osamu, et al. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction[J]. ACS Catalysis, 2017, 7(1): 70-88.
|
12 |
PARASTAEV Alexander, MURAVEV Valery, OSTA Elisabet Huertas, et al. Breaking structure sensitivity in CO2 hydrogenation by tuning metal-oxide interfaces in supported cobalt nanoparticles[J]. Nature Catalysis, 2022, 5(11): 1051-1060.
|
13 |
WANG Ting, SUN Fuli, LIU Shoujie, et al. Dioxygen-enhanced CO2 photoreduction on TiO2 supported Cu single-atom sites[J]. Applied Catalysis B: Environmental, 2023, 325: 122339.
|
14 |
WU Dongxue, LIANG Qian, SI Honglin, et al. Self-assembly of a heterogeneous microreactor with carbon dots embedded in Ti-MOF derived ZnIn2S4/TiO2 microcapsules for efficient CO2 photoreduction[J]. Journal of Materials Chemistry A, 2022, 10(46): 24519-24528.
|
15 |
王英杰, 董辰, 谢亚勃, 等. MOF基材料绿色催化CO2还原研究进展[J]. 北京工业大学学报, 2022, 48(3): 261-272, 305.
|
|
WANG Yingjie, DONG Chen, XIE Yabo, et al. Research progress of CO2 reduction catalyzed by MOF-based materials[J]. Journal of Beijing University of Technology, 2022, 48(3): 261-272, 305.
|
16 |
DAI Chunhui, LIU Bin. Conjugated polymers for visible-light-driven photocatalysis[J]. Energy & Environmental Science, 2020, 13(1): 24-52.
|
17 |
HUANG Kuan, ZHANG Jia Yin, LIU Fujian, et al. Synthesis of porous polymeric catalysts for the conversion of carbon dioxide[J]. ACS Catalysis, 2018, 8(10): 9079-9102.
|
18 |
SPRICK Reiner Sebastian, JIANG Jiaxing, BONILLO Baltasar, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution[J]. Journal of the American Chemical Society, 2015, 137(9): 3265-3270.
|
19 |
YANG Sizhuo, HU Wenhui, ZHANG Xin, et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction[J]. Journal of the American Chemical Society, 2018, 140(44): 14614-14618.
|
20 |
刘雨菲, 张蜜, 路猛, 等. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
|
|
LIU Yvfei, ZHANG Mi, LU Meng, et al. Covalent organic frameworks for photocatalytic CO2 reduction[J]. Progress in Chemistry, 2023, 35(3): 349-359.
|
21 |
WANG Shengyao, Xiao HAI, DING Xing, et al. Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction[J]. Nature Communications, 2020, 11: 1149.
|
22 |
Surya DAS, HAZRA CHOWDHURY Ipsita, HAZRA CHOWDHURY Arpita, et al. Metal-free covalent organic framework for facile production of solar fuel via CO2 reduction[J]. Industrial & Engineering Chemistry Research, 2022, 61(46): 17044-17056.
|
23 |
LEENAERS Pieter J, MAUFORT Arthur J L A, WIENK Martijn M, et al. Impact of π-conjugated linkers on the effective exciton binding energy of diketopyrrolopyrrole-dithienopyrrole copolymers[J]. The Journal of Physical Chemistry C, 2020, 124(50): 27403-27412.
|
24 |
YU Xiaoxiao, TIAN Shuyao, ZHANG Fengtao, et al. Tailoring the exciton binding energy of 2D conjugated polymers for powering metal-free CO2 photoreduction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(49): 16182-16188.
|
25 |
LAN Zhian, ZHANG Guigang, CHEN Xiong, et al. Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions[J]. Angewandte Chemie (International Ed in English), 2019, 58(30): 10236-10240.
|
26 |
CUI Lin, YU Shilong, GAO Wenqiang, et al. Tetraphenylenthene-based conjugated microporous polymer for aggregation-induced electrochemiluminescence[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 7966-7973.
|
27 |
YU Fengtao, ZHU Zhiqiang, LI Chuangye, et al. A redox-active perylene-anthraquinone donor-acceptor conjugated microporous polymer with an unusual electron delocalization channel for photocatalytic reduction of uranium (Ⅵ) in strongly acidic solution[J]. Applied Catalysis B: Environmental, 2022, 314: 121467.
|
28 |
LUO Lianwei, MA Wenyan, DONG Peihua, et al. Synthetic control of electronic property and porosity in anthraquinone-based conjugated polymer cathodes for high-rate and long-cycle-life Na-organic batteries[J]. ACS Nano, 2022, 16(9): 14590-14599.
|
29 |
QIAN Yunyang, LI Dandan, HAN Yulan, et al. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(49): 20763-20771.
|
30 |
LI Xiaojiao, SUN Hong-Bin, SUN Xudong. Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries[J]. Polymer, 2021, 234: 124245.
|
31 |
KIM Wonbin, AHMAD Zubair, LEE Hong-Joon, et al. Electrochemical properties of anthraquinone-containing polymer nanocomposite by nano-level molecular ordering[J]. Polymer Chemistry, 2021, 12(42): 6154-6160.
|
32 |
RUIZ-MUELLE Ana Belén, Rafael CONTRERAS-CÁCERES, Pascual OÑA-BURGOS, et al. Polyacrylic acid polymer brushes as substrates for the incorporation of anthraquinone derivatives. Unprecedented application of decorated polymer brushes on organocatalysis[J]. Applied Surface Science, 2018, 428: 566-578.
|
33 |
GUO Shien, XIAO Yuting, JIANG Baojiang. Encapsulation of Pd nanoparticles in covalent triazine frameworks for enhanced photocatalytic CO2 conversion[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(37): 12646-12654.
|
34 |
Kyung-Lyul BAE, KIM Jinmo, Chan Kyu LIM, et al. Colloidal zinc oxide-copper(Ⅰ) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane[J]. Nature Communications, 2017, 8: 1156.
|
35 |
YU Xiaoxiao, GONG Ke, TIAN Shuyao, et al. A hydrophilic fully conjugated covalent organic framework for photocatalytic CO2 reduction to CO nearly 100% using pure water[J]. Journal of Materials Chemistry A, 2023, 11(11): 5627-5635.
|
36 |
GUO Liping, NIU Yingli, XU Haitao, et al. Engineering heteroatoms with atomic precision in donor-acceptor covalent triazine frameworks to boost photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2018, 6(40): 19775-19781.
|
37 |
WANG Congyong, ZHANG Zhicheng, ZHU Yating, et al. 2D covalent organic frameworks: From synthetic strategies to advanced optical-electrical-magnetic functionalities[J]. Advanced Materials, 2022, 34(17): e2102290.
|
38 |
ZHENG Bing, QI Feng, ZHANG Yu, et al. Over 14% efficiency single-junction organic solar cells enabled by reasonable conformation modulating in naphtho[2, 3-b: 6, 7-b']difuran based polymer[J]. Advanced Energy Materials, 2021, 11(13): 2003954.
|
39 |
BARMAN Soumitra, SINGH Ashish, RAHIMI Faruk Ahamed, et al. Metal-free catalysis: A redox-active donor-acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4 [J]. Journal of the American Chemical Society, 2021, 143(39): 16284-16292.
|
40 |
CHEN Bo, CHEN Wanru, WANG Miao, et al. Unravelling the multiple synergies in MOF/CMP supramolecular heterojunction for enhanced artificial photosynthesis[J]. Advanced Materials Interfaces, 2023, 10(6): 2201971.
|
41 |
WANG Lujie, WANG Ruilei, ZHANG Xiao, et al. Improved photoreduction of CO2 with water by tuning the valence band of covalent organic frameworks[J]. ChemSusChem, 2020, 13(11): 2973-2980.
|
42 |
YE Wenqiang, WANG Yuepeng, JI Guipeng, et al. Carbazolic conjugated organic polymers for visible-light-driven CO2Photoreduction with H2O to CO with high efficiency and selectivity[J]. ChemSusChem, 2022, 15(16): e202200759.
|
43 |
CHOE Min Su, CHOI Sunghan, LEE Hyun Seok, et al. Sustainable carbon dioxide reduction of the P3HT polymer-sensitized TiO2/Re(Ⅰ) photocatalyst[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50718-50730.
|
44 |
YU Zhen, XIAO Yuting, GUO Shien, et al. Visible light-driven selective reduction of CO2 by acetylene-bridged cobalt porphyrin conjugated polymers[J]. ChemSusChem, 2022, 15(12): e202200424.
|