化工进展 ›› 2024, Vol. 43 ›› Issue (1): 49-59.DOI: 10.16085/j.issn.1000-6613.2023-1472
王棵旭1,2(), 张香平2,3, 王红岩2, 柏䶮1(), 王慧2,3()
收稿日期:
2023-08-22
修回日期:
2023-11-24
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
柏?,王慧
作者简介:
王棵旭(1997—),男,博士研究生,研究方向为电流响应催化剂的设计及催化裂解性能。E-mail:wangkexu@ipe.ac.cn。
基金资助:
WANG Kexu1,2(), ZHANG Xiangping2,3, WANG Hongyan2, BAI Yan1(), WANG Hui2,3()
Received:
2023-08-22
Revised:
2023-11-24
Online:
2024-01-20
Published:
2024-02-05
Contact:
BAI Yan, WANG Hui
摘要:
电流响应催化剂是一类可在电场诱导作用下产生电流的新型催化材料,以其为介质的催化反应过程可突破热力学局限,在温和条件下即可发生,具有显著节能减碳潜力。本文综述了近年来电流响应催化剂强化合成氨、甲烷高值利用、丙烷脱氢三个典型反应的研究进展,总结了所开发系列电流响应催化剂,其中以负载型金属催化剂为主,其由载体(半导体型或钙钛矿型金属氧化物)和活性金属(单一金属或合金)组成,对比了不同催化剂的催化性能,分析了“质子跳跃”在强化上述反应过程的作用。最后,分析了电流强化技术未来发展方向及面临挑战,提出开发适于电流作用下的原位表征技术及分子模拟方法,这对从微观层面深入揭示反应机理具有重要意义,可反向指导催化剂设计,推动相关领域发展,助力化工行业低碳转型。
中图分类号:
王棵旭, 张香平, 王红岩, 柏䶮, 王慧. 电流响应催化剂及其强化典型反应的研究进展[J]. 化工进展, 2024, 43(1): 49-59.
WANG Kexu, ZHANG Xiangping, WANG Hongyan, BAI Yan, WANG Hui. Progress on current-responsive catalysts and their applications in intensifying typical reactions[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 49-59.
催化剂 | 制备方法 | 电场参数 | 压力 /MPa | 温度 /K | 原料组成 /sccm | 氨生成速率 /μmol·g-1·h-1 | 文献 | ||
---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | |||||||
Cs/Ru/SrZrO3 | 柠檬酸络合-浸渍法 | 6 | 0.47 | 2.82 | 0.9 | 623 | N2=60 H2=180 | 30099 | [ |
Co/Ce0.5Zr0.5O2 | 柠檬酸络合-浸渍法 | 6 | 0.19 | 1.14 | 0.1 | 721.7 | N2=60 H2=180 | 2128.4 | [ |
Fe/CeO2 | 浸渍法 | 6 | 0.2 | 1.2 | 0.1 | 373 | N2=60 H2=180 | 150 | [ |
Fe/Ce0.4Al0.1Zr0.5O2-δ | 柠檬酸络合-液相还原法 | 6 | 0.41 | 2.46 | 0.1 | 476.2 | N2=60 H2=180 | 1045.5 | [ |
Ru/CeO2 | 浸渍法 | 6 | 0.28 | 1.68 | 0.1 | 378 | N2=60 H2=180 | 266.4 | [ |
Ru/Sr1-x Ba x ZrO3(0≤x≤0.50) | 柠檬酸络合-浸渍法 | 6 | 0.284 | 1.704 | 0.1 | 646.4 | N2=60 H2=180 | 3937.7 | [ |
表1 电流响应催化剂及合成氨性能
催化剂 | 制备方法 | 电场参数 | 压力 /MPa | 温度 /K | 原料组成 /sccm | 氨生成速率 /μmol·g-1·h-1 | 文献 | ||
---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | |||||||
Cs/Ru/SrZrO3 | 柠檬酸络合-浸渍法 | 6 | 0.47 | 2.82 | 0.9 | 623 | N2=60 H2=180 | 30099 | [ |
Co/Ce0.5Zr0.5O2 | 柠檬酸络合-浸渍法 | 6 | 0.19 | 1.14 | 0.1 | 721.7 | N2=60 H2=180 | 2128.4 | [ |
Fe/CeO2 | 浸渍法 | 6 | 0.2 | 1.2 | 0.1 | 373 | N2=60 H2=180 | 150 | [ |
Fe/Ce0.4Al0.1Zr0.5O2-δ | 柠檬酸络合-液相还原法 | 6 | 0.41 | 2.46 | 0.1 | 476.2 | N2=60 H2=180 | 1045.5 | [ |
Ru/CeO2 | 浸渍法 | 6 | 0.28 | 1.68 | 0.1 | 378 | N2=60 H2=180 | 266.4 | [ |
Ru/Sr1-x Ba x ZrO3(0≤x≤0.50) | 柠檬酸络合-浸渍法 | 6 | 0.284 | 1.704 | 0.1 | 646.4 | N2=60 H2=180 | 3937.7 | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产物生成速率 /μmol·min-1 | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CO2 | CO | H2 | ||||||
Pd/CeO2 | 浸渍法 | 3 | 0.44 | 1.32 | 523 | CH4/H2O/Ar=12/24/18; GHSV: 22500h-1 | 20.3 | 81.4 | 18.0 | 375.3 | [ |
Ru/CeO2 | 0.92 | 2.78 | 27.5 | 97.4 | 32.4 | 509.3 | [ | ||||
Pt/CeO2 | 0.93 | 2.80 | 13.9 | 62.5 | 4.8 | 263.6 | [ | ||||
Ni/CeO2 | 0.55 | 1.66 | 487 | 14.5 | 67.9 | 5.1 | 281.4 | [ | |||
Pd/Ce0.25Zr0.75O2 | 尿素沉积沉淀法、浸渍法 | 3 | 1.16 | 3.47 | 536 | 41.0 | 147.8 | 62.2 | 761.9 | [ | |
Ru/Ce0.25Zr0.75O2 | 1.15 | 3.46 | 544 | 42.3 | 140.4 | 71.0 | 756.9 | [ | |||
Pt/Ce0.25Zr0.75O2 | 0.94 | 2.83 | 526 | 39.1 | 139.6 | 62.8 | 725.2 | [ | |||
Ni/Ce0.25Zr0.75O2 | 1.18 | 3.54 | 535 | 41.6 | 126.2 | 84.6 | 708.8 | [ | |||
Pd/SrTiO3 | 柠檬酸络合-浸渍法 | 3 | 0.64 | 1.93 | 466 | 13.1 | 30.1 | 31.4 | 225.0 | [ | |
Ru/SrTiO3 | 0.77 | 2.32 | 496 | 22.4 | 88.4 | 23.2 | 431.8 | ||||
Pt/SrTiO3 | 0.66 | 1.97 | 457 | 4.9 | 19.1 | 4.3 | 95.9 | ||||
Ni/SrTiO3 | 0.89 | 2.67 | 499 | 2.9 | 12.2 | 0.6 | 49.0 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 行星式 球磨机混合 | 3 | 0.55 | 1.65 | 475.2 | CH4/H2O/Ar=12/24/18 | 14.0 | 62.8 | 2.3 | 243.3 | [ |
Pt/CeO2(200mg)+ Al2O3(50mg) | 0.76 | 2.28 | 484.3 | 20.4 | 82.7 | 3.7 | 358.9 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 研钵研磨混合 (355~500μm) | 3 | 0.47 | 1.41 | 474.7 | 11.4 | 51.4 | 1.8 | 202.5 | ||
Pt/CeO2(200mg)+ ZrO2(100mg) | 0.66 | 1.98 | 482.8 | 14.6 | 62.3 | 5.2 | 262.9 | ||||
Pt/CeO2 (200mg) + Al2O3 (50mg) | 0.64 | 1.92 | 489.5 | 15.6 | 69.9 | 1.9 | 294.2 | ||||
Pt/CeO2(200mg)+ Al2O3(100mg) | 0.70 | 2.10 | 484.0 | 15.1 | 72.0 | 6.5 | 282.5 | ||||
Pt/CeO2(200mg)+ SiO2(50mg) | 0.59 | 1.77 | 478.8 | 15.2 | 69.4 | 3.8 | 282.2 | ||||
Pd0.9Zn0.1/Ce0.5Zr0.5O2 | 浸渍法 | 3~7 | — | 1.5 | 423 | CH4/H2O/Ar=10/20/70 | 19.6 | TOF-p=31.9s-1 | [ | ||
Pd/Nb2O5 | 9 | 0.144 | 1.30 | 457 | 7.5 | — | — | — | [ | ||
Pd/Ta2O5 | 0.132 | 1.16 | 454 | 6.1 | — | — | — | ||||
Pd/Al-CeO2 | 柠檬酸络合-浸渍法 | 3~9 | — | 0.8 | 473 | CH4/H2O/Ar=12/24/84 | — | r(CO+CO2)= 0.042 mmol/min | [ | ||
Zr0.65Y0.05Ni0.3O2 | 柠檬酸络合法 | — | 1.5 | 473 | 16.3 | r(CO+CO2)=0.113mmol/min | [ |
表2 电流响应催化剂及甲烷水蒸气重整性能
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产物生成速率 /μmol·min-1 | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CO2 | CO | H2 | ||||||
Pd/CeO2 | 浸渍法 | 3 | 0.44 | 1.32 | 523 | CH4/H2O/Ar=12/24/18; GHSV: 22500h-1 | 20.3 | 81.4 | 18.0 | 375.3 | [ |
Ru/CeO2 | 0.92 | 2.78 | 27.5 | 97.4 | 32.4 | 509.3 | [ | ||||
Pt/CeO2 | 0.93 | 2.80 | 13.9 | 62.5 | 4.8 | 263.6 | [ | ||||
Ni/CeO2 | 0.55 | 1.66 | 487 | 14.5 | 67.9 | 5.1 | 281.4 | [ | |||
Pd/Ce0.25Zr0.75O2 | 尿素沉积沉淀法、浸渍法 | 3 | 1.16 | 3.47 | 536 | 41.0 | 147.8 | 62.2 | 761.9 | [ | |
Ru/Ce0.25Zr0.75O2 | 1.15 | 3.46 | 544 | 42.3 | 140.4 | 71.0 | 756.9 | [ | |||
Pt/Ce0.25Zr0.75O2 | 0.94 | 2.83 | 526 | 39.1 | 139.6 | 62.8 | 725.2 | [ | |||
Ni/Ce0.25Zr0.75O2 | 1.18 | 3.54 | 535 | 41.6 | 126.2 | 84.6 | 708.8 | [ | |||
Pd/SrTiO3 | 柠檬酸络合-浸渍法 | 3 | 0.64 | 1.93 | 466 | 13.1 | 30.1 | 31.4 | 225.0 | [ | |
Ru/SrTiO3 | 0.77 | 2.32 | 496 | 22.4 | 88.4 | 23.2 | 431.8 | ||||
Pt/SrTiO3 | 0.66 | 1.97 | 457 | 4.9 | 19.1 | 4.3 | 95.9 | ||||
Ni/SrTiO3 | 0.89 | 2.67 | 499 | 2.9 | 12.2 | 0.6 | 49.0 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 行星式 球磨机混合 | 3 | 0.55 | 1.65 | 475.2 | CH4/H2O/Ar=12/24/18 | 14.0 | 62.8 | 2.3 | 243.3 | [ |
Pt/CeO2(200mg)+ Al2O3(50mg) | 0.76 | 2.28 | 484.3 | 20.4 | 82.7 | 3.7 | 358.9 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 研钵研磨混合 (355~500μm) | 3 | 0.47 | 1.41 | 474.7 | 11.4 | 51.4 | 1.8 | 202.5 | ||
Pt/CeO2(200mg)+ ZrO2(100mg) | 0.66 | 1.98 | 482.8 | 14.6 | 62.3 | 5.2 | 262.9 | ||||
Pt/CeO2 (200mg) + Al2O3 (50mg) | 0.64 | 1.92 | 489.5 | 15.6 | 69.9 | 1.9 | 294.2 | ||||
Pt/CeO2(200mg)+ Al2O3(100mg) | 0.70 | 2.10 | 484.0 | 15.1 | 72.0 | 6.5 | 282.5 | ||||
Pt/CeO2(200mg)+ SiO2(50mg) | 0.59 | 1.77 | 478.8 | 15.2 | 69.4 | 3.8 | 282.2 | ||||
Pd0.9Zn0.1/Ce0.5Zr0.5O2 | 浸渍法 | 3~7 | — | 1.5 | 423 | CH4/H2O/Ar=10/20/70 | 19.6 | TOF-p=31.9s-1 | [ | ||
Pd/Nb2O5 | 9 | 0.144 | 1.30 | 457 | 7.5 | — | — | — | [ | ||
Pd/Ta2O5 | 0.132 | 1.16 | 454 | 6.1 | — | — | — | ||||
Pd/Al-CeO2 | 柠檬酸络合-浸渍法 | 3~9 | — | 0.8 | 473 | CH4/H2O/Ar=12/24/84 | — | r(CO+CO2)= 0.042 mmol/min | [ | ||
Zr0.65Y0.05Ni0.3O2 | 柠檬酸络合法 | — | 1.5 | 473 | 16.3 | r(CO+CO2)=0.113mmol/min | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产率/% | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CH4 | CO2 | CO | H2 | H2/CO | |||||
Pt/CeO2 | 浸渍法 | 20 | 0.14 | 2.81 | 453 | CH4/CO2/Ar=20/20/40 | 15.1 | 16.4 | — | — | 0.76 | [ |
Ni/La-ZrO2 | 柠檬酸络合-浸渍法 | 3 | 1.23 | 3.7 | 555 | CH4/CO2/Ar=25/25/50;W/F①=1.6g·h/mol | 22.8 | 24.8 | 22.8 | — | 0.83 | [ |
Ni0.8Fe0.2/CeO2 | 尿素沉积 沉淀法 | 10 | — | — | 473 | CH4/CO2/Ar=10/10/10 | 6.0 | 6.5 | 5.7 | 6.0 | 0.82 | [ |
Ni-Fe/AC | 浸渍法 | 9 | 1 | 9 | 673 | CH4∶CO2∶N2=1∶1∶2; GHSV:800h-1 | 19.53 | 29.36 | — | — | 0.67 | [ |
表3 电流响应催化剂及甲烷干重整性能
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产率/% | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CH4 | CO2 | CO | H2 | H2/CO | |||||
Pt/CeO2 | 浸渍法 | 20 | 0.14 | 2.81 | 453 | CH4/CO2/Ar=20/20/40 | 15.1 | 16.4 | — | — | 0.76 | [ |
Ni/La-ZrO2 | 柠檬酸络合-浸渍法 | 3 | 1.23 | 3.7 | 555 | CH4/CO2/Ar=25/25/50;W/F①=1.6g·h/mol | 22.8 | 24.8 | 22.8 | — | 0.83 | [ |
Ni0.8Fe0.2/CeO2 | 尿素沉积 沉淀法 | 10 | — | — | 473 | CH4/CO2/Ar=10/10/10 | 6.0 | 6.5 | 5.7 | 6.0 | 0.82 | [ |
Ni-Fe/AC | 浸渍法 | 9 | 1 | 9 | 673 | CH4∶CO2∶N2=1∶1∶2; GHSV:800h-1 | 19.53 | 29.36 | — | — | 0.67 | [ |
催化剂 | 制备方法 | 电场参数 | 温度 /K | 原料组成/sccm | 转化率/% | C2/% | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | CH4 | O2 | 选择性 | 产率 | |||||
Gd2O3 | — | 3 | 0.8 | 2.4 | 423 | CH4/O2/Ar=25/5/100; W/F=3.2g·h/mol | 10.3 | 46.5 | (C2H6+C2H4):39.2; C2H2:0.8 | — | [ |
Sr-La2O3(Sr/La=1/20) | 柠檬酸 络合法 | 3 | 0.9 | 2.7 | 423 | 8.9 | 51.3 | C2H6:33.5 C2H4:15.5 C2H2:0 | — | [ | |
La-ZrO2 | 3 | 2 | 6 | 423 | CH4/CO2/Ar=25/25/50 W/F=1.67g·h/mol; WHSV:18h-1 | 3.2 | CO2:4.1 | (C2H6+C2H4):31.2 | — | [ | |
La0.7Ca0.3AlO3-δ | 3 | 1.2 | 3.6 | 588 | CH4/O2/Ar=25/5/70 | 17.4 | 77.5 | C2H6:15.8 C2H4:13.3 C2H2:0.2 | 5.1 | [ | |
La0.7Ca0.3AlO3-δ | 3 | 2.5 | 7.5 | 423 | CH4/CO2/Ar=25/25/50 | 10.4 | CO2:14.2 | 19.6 | 2.0 | [ | |
Ce2(WO4)3 | 3 | 0.7 | 2.1 | 659 | CH4/O2/Ar=25/15/60; W/F(CH4):1.5g·h/mol | 9.7 | 11.6 | (C2H6+C2H4+C2H2):41.2 | 4.0 | [ | |
Ce2(WO4)3/CeO2 | 浸渍法 | 3 | 0.8 | 2.5 | 649 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 13.6 | — | (C2H6+C2H4+C2H2):39.0 | — | [ |
(TBA)3PW12O40/CeO2 | Copaux法-浸渍法 | 3 | 1.3 | 3.9 | 689 | 14.9 | 20.6 | C2H6:13.8 C2H4:18.4 C2H2:11.2 | 6.5 | [ | |
CePO4 | 水热法 | 7 | 0.8 | 5.6 | 542 | CH4/O2/Ar=15/12/33; W/F(CH4):2.49g·h/mol | 62 | 66 | (C2H6+C2H4+C2H2):29 | 18 | [ |
TiO2/ZSM-5 | 水热法-机械化学法 | 8 | 2.4 | 19.2 | 432 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 18.4 | — | C2H6:8.5 C2H4:15.7 C2H2:6.5 C3H6:1.7 | 5.6 | [ |
表4 电流响应催化剂及甲烷偶联制乙烯性能
催化剂 | 制备方法 | 电场参数 | 温度 /K | 原料组成/sccm | 转化率/% | C2/% | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | CH4 | O2 | 选择性 | 产率 | |||||
Gd2O3 | — | 3 | 0.8 | 2.4 | 423 | CH4/O2/Ar=25/5/100; W/F=3.2g·h/mol | 10.3 | 46.5 | (C2H6+C2H4):39.2; C2H2:0.8 | — | [ |
Sr-La2O3(Sr/La=1/20) | 柠檬酸 络合法 | 3 | 0.9 | 2.7 | 423 | 8.9 | 51.3 | C2H6:33.5 C2H4:15.5 C2H2:0 | — | [ | |
La-ZrO2 | 3 | 2 | 6 | 423 | CH4/CO2/Ar=25/25/50 W/F=1.67g·h/mol; WHSV:18h-1 | 3.2 | CO2:4.1 | (C2H6+C2H4):31.2 | — | [ | |
La0.7Ca0.3AlO3-δ | 3 | 1.2 | 3.6 | 588 | CH4/O2/Ar=25/5/70 | 17.4 | 77.5 | C2H6:15.8 C2H4:13.3 C2H2:0.2 | 5.1 | [ | |
La0.7Ca0.3AlO3-δ | 3 | 2.5 | 7.5 | 423 | CH4/CO2/Ar=25/25/50 | 10.4 | CO2:14.2 | 19.6 | 2.0 | [ | |
Ce2(WO4)3 | 3 | 0.7 | 2.1 | 659 | CH4/O2/Ar=25/15/60; W/F(CH4):1.5g·h/mol | 9.7 | 11.6 | (C2H6+C2H4+C2H2):41.2 | 4.0 | [ | |
Ce2(WO4)3/CeO2 | 浸渍法 | 3 | 0.8 | 2.5 | 649 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 13.6 | — | (C2H6+C2H4+C2H2):39.0 | — | [ |
(TBA)3PW12O40/CeO2 | Copaux法-浸渍法 | 3 | 1.3 | 3.9 | 689 | 14.9 | 20.6 | C2H6:13.8 C2H4:18.4 C2H2:11.2 | 6.5 | [ | |
CePO4 | 水热法 | 7 | 0.8 | 5.6 | 542 | CH4/O2/Ar=15/12/33; W/F(CH4):2.49g·h/mol | 62 | 66 | (C2H6+C2H4+C2H2):29 | 18 | [ |
TiO2/ZSM-5 | 水热法-机械化学法 | 8 | 2.4 | 19.2 | 432 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 18.4 | — | C2H6:8.5 C2H4:15.7 C2H2:6.5 C3H6:1.7 | 5.6 | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | C3H8 | C3H6 | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | 转化率/% | 选择性/% | 产率/% | ||||||
Pt-In/TiO2 | 浸渍法 | 60 | 0.05 | 3 | 523 | C3H8/He=10/10 | 5 | 100 | 10.2 | [ | |
Pt-In/Sm-TiO2 | 水热法-浸渍法 | 50 | 0.107 | 5.35 | 573 | 19.7 | 97.7 | 19.3 | [ |
表5 电流响应催化剂及丙烷脱氢性能
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | C3H8 | C3H6 | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | 转化率/% | 选择性/% | 产率/% | ||||||
Pt-In/TiO2 | 浸渍法 | 60 | 0.05 | 3 | 523 | C3H8/He=10/10 | 5 | 100 | 10.2 | [ | |
Pt-In/Sm-TiO2 | 水热法-浸渍法 | 50 | 0.107 | 5.35 | 573 | 19.7 | 97.7 | 19.3 | [ |
1 | WANG Jun, USMAN Muhammad, SAQIB Najia, et al. Asymmetric environmental performance under economic complexity, globalization and energy consumption: Evidence from the world’s largest economically complex economy[J]. Energy, 2023, 279: 128050. |
2 | Venkata MOHAN S, KATAKOJWALA Ranaprathap. The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 28: 100434. |
3 | CHEN Jianfeng. Green chemical engineering for a better life[J]. Engineering, 2017, 3(3): 279. |
4 | YANG Jing, LI Lingyue, LIANG Yuhan, et al. Sustainability performance of global chemical industry based on green total factor productivity[J]. Science of the Total Environment, 2022, 830: 154787. |
5 | 黄仲涛, 李雪辉, 王乐夫. 21世纪化工发展趋势[J]. 化工进展, 2001, 20(4): 1-4, 11. |
HUANG Zhongtao, LI Xuehui, WANG Lefu. The development trend of chemical engineering in the 21st century[J]. Chemical Industry and Engineering Progress, 2001, 20(4): 1-4, 11. | |
6 | 杨贺勤, 刘志成, 谢在库. 绿色化工技术研究新进展[J]. 化工进展, 2016, 35(6): 1575-1586. |
YANG Heqin, LIU Zhicheng, XIE Zaiku. Review of recent development of green chemical technologies[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1575-1586. | |
7 | JENNINGS Neil, RAO Mala. Towards a carbon neutral NHS[J]. BMJ, 2020: m3884. |
8 | KIM Jin-Kuk. Studies on the conceptual design of energy recovery and utility systems for electrified chemical processes[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112718. |
9 | 张香平, 海彬. 基于智慧能源系统的低碳化工过程[J]. 中国科学基金, 2023, 37(2): 238-245. |
ZHANG Xiangping, Bin HAI. Low-carbon chemical processes based on smart energy systems[J]. Bulletin of National Natural Science. Foundation of China, 2023, 37(2): 238-245. | |
10 | BIAN Wenjuan, WU Wei, WANG Baoming, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485. |
11 | TANG Duoyue, LU Guilong, SHEN Zewen, et al. A review on photo-, electro- and photoelectro-catalytic strategies for selective oxidation of alcohols[J]. Journal of Energy Chemistry, 2023, 77: 80-118. |
12 | YUDAI Hisai, MA Quanbao, THOMAS Qureishy, et al. Enhanced activity of catalysts on substrates with surface protonic current in an electrical field: A review[J]. Chemical Communications, 2021, 57(47): 5737-5749. |
13 | TANG Rui, HUANG Jun. Enclosing the nitrogen cycle: Ammonia synthesis by NO x reduction[J]. Current Opinion in Green and Sustainable Chemistry, 2022, 38: 100681. |
14 | YE Dongpei, EDMAN Tsang Shik Chi. Prospects and challenges of green ammonia synthesis[J]. Nature Synthesis, 2023, 2: 612-623. |
15 | BEZDEK Máté J, CHIRIK Paul J. A fresh approach to synthesizing ammonia from air and water[J]. Nature, 2019, 568(7753): 464-466. |
16 | PRASIDHA Willie, WIDYATAMA Arif, AZIZ Muhammad. Energy-saving and environmentally-benign integrated ammonia production system[J]. Energy, 2021, 235: 121400. |
17 | Cheema IZZAT-IQBAL, ULRIKE Krewer. Operating envelope of Haber-Bosch process design for power-to-ammonia[J]. RSC Advances, 2018, 8(61): 34926-34936. |
18 | WANG Changlong, WALSH Stuart D C, LONGDEN Thomas, et al. Optimising renewable generation configurations of off-grid green ammonia production systems considering Haber-Bosch flexibility[J]. Energy Conversion and Management, 2023, 280: 116790. |
19 | 刘福建, 郑勇, 曹彦宁, 等. 高炉煤气/转炉煤气低碳高效合成氨工艺流程[J]. 过程工程学报, 2023, 23(3): 350-358. |
LIU Fujian, ZHENG Yong, CAO Yanning, et al. Low-carbon and high-efficiency ammonia synthesis process from blast furnace gas/converter gas[J]. The Chinese Journal of Process Engineering, 2023, 23(3): 350-358. | |
20 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: Past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
21 | McPherson IAN-JAMES, Sudmeier TIM, JOSHUA Fellowes, et al. Materials for electrochemical ammonia synthesis[J]. Dalton Transactions, 2019, 48(5): 1562-1568. |
22 | CHEN Aling, XIA Baoyu. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis[J]. Journal of Materials Chemistry A, 2019, 7(41): 23416-23431. |
23 | KIBSGAARD Jakob, NØRSKOV Jens K, CHORKENDORFF Ib. The difficulty of proving electrochemical ammonia synthesis[J]. ACS Energy Letters, 2019, 4(12): 2986-2988. |
24 | KYRIAKOU Vasileios, GARAGOUNIS Ioannis, VOURROS Anastasios, et al. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1): 142-158. |
25 | SWEARER Dayne F, KNOWLES Nicola R, EVERITT Henry O, et al. Light-driven chemical looping for ammonia synthesis[J]. ACS Energy Letters, 2019, 4(7): 1505-1512. |
26 | ZHANG Guoqiang, LI Yongliang, HE Chuanxin, et al. Recent progress in 2D catalysts for photocatalytic and electrocatalytic artificial nitrogen reduction to ammonia[J]. Advanced Energy Materials, 2021, 11(11): 2003294. |
27 | TAN Jiangdan, REN Hanjie, ZHAO Zhanfeng, et al. Ca2+ doped metal organic frameworks for enhanced photocatalytic ammonia synthesis[J]. Chemical Engineering Journal, 2023, 466: 143259. |
28 | LIU Sisi, WANG Mengfan, JI Haoqing, et al. Solvent-in-gas system for promoted photocatalytic ammonia synthesis on porous framework materials[J]. Advanced Materials, 2023, 35(14): 2211730. |
29 | FOSTER Shelby L, BAKOVIC Sergio I Perez, DUDA Royce D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500. |
30 | SUN Wuji, LI Lanxin, ZHANG Haoyu, et al. A bioinspired iron-centered electrocatalyst for selective catalytic reduction of nitrate to ammonia[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5958-5965. |
31 | WANG Yaolin, MICHAEL Craven, YU Xiaotong, et al. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: Insights into the importance of the catalyst surface on the reaction mechanism[J]. ACS Catalysis, 2019, 9(12): 10780-10793. |
32 | Jose OSORIO-TEJADA, TRAN Nam N, HESSEL Volker. Techno-environmental assessment of small-scale haber-bosch and plasma-assisted ammonia supply chains[J]. Science of the Total Environment, 2022, 826: 154162. |
33 | ZENG Xin, ZHANG Shuai, HU Xiucui, et al. Recent advances in plasma-enabled ammonia synthesis: State-of-the-art, challenges, and outlook[J]. Faraday Discussions, 2023, 243: 473-491. |
34 | SEKINE Yasushi. Low temperature ammonia synthesis by surface protonics over metal supported catalysts[J]. Faraday Discussions, 2023, 243: 179-197. |
35 | MANABE R, NAKATSUBO H, GONDO A, et al. Electrocatalytic synthesis of ammonia by surface proton hopping[J]. Chemical Science, 2017, 8(8): 5434-5439. |
36 | MURAKAMI Kota, MANABE Ryo, NAKATSUBO Hideaki, et al. Elucidation of the role of electric field on low temperature ammonia synthesis using isotopes[J]. Catalysis Today, 2018, 303: 271-275. |
37 | Gondo AMI, Manabe RYO, RYUYA Sakai, et al. Ammonia synthesis over cocatalyst in an electric field[J]. Catalysis Letters, 2018, 148(7): 1929-1938. |
38 | MURAKAMI Kota, TANAKA Yuta, SAKAI Ryuya, et al. The important role of N2H formation energy for low-temperature ammonia synthesis in an electric field[J]. Catalysis Today, 2020, 351: 119-124. |
39 | SAKAI Ryuya, MURAKAMI Kota, MIZUTANI Yuta, et al. Agglomeration suppression of a Fe-supported catalyst and its utilization for low-temperature ammonia synthesis in an electric field[J]. ACS Omega, 2020, 5(12): 6846-6851. |
40 | KOTA Murakami, YUTA Tanaka, RYUYA Sakai, et al. Key factor for the anti-Arrhenius low-temperature heterogeneous catalysis induced by H+ migration: H+ coverage over support[J]. Chemical Communications, 2020, 56(23): 3365-3368. |
41 | YUTA Tanaka, KOTA Murakami, Doi SAE, et al. Effects of a-site composition of perovskite (Sr1- x Ba x ZrO3) oxides on H atom adsorption, migration, and reaction[J]. RSC Advances, 2021, 11(13): 7621-7626. |
42 | Wioletta RARÓG-PILECKA, Elżbieta MIŚKIEWICZ, Leszek KĘPIŃSKI, et al. Ammonia synthesis over barium-promoted cobalt catalysts supported on graphitised carbon[J]. Journal of Catalysis, 2007, 249(1): 24-33. |
43 | TAKISE Kent, MANABE Shota, MURAGUCHI Keisuke, et al. Anchoring effect and oxygen redox property of Co/La0.7Sr0.3AlO3- δ perovskite catalyst on toluene steam reforming reaction[J]. Applied Catalysis A: General, 2017, 538: 181-189. |
44 | ISHIKAWA Atsushi, Toshiki DOI, NAKAI Hiromi. Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis[J]. Journal of Catalysis, 2018, 357: 213-222. |
45 | PARRA David, VALVERDE Luis, Javier PINO F, et al. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 279-294. |
46 | BIAN Zhoufeng, WANG Zhigang, JIANG Bo, et al. A review on perovskite catalysts for reforming of methane to hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110291. |
47 | OSHIMA Kazumasa, SHINAGAWA Tatsuya, SEKINE Yasushi. Methane conversion assisted by plasma or electric field[J]. Journal of the Japan Petroleum Institute, 2013, 56(1): 11-21. |
48 | TORIMOTO Maki, MURAKAMI Kota, SEKINE Yasushi. Low-temperature heterogeneous catalytic reaction by surface protonics[J]. Bulletin of the Chemical Society of Japan, 2019, 92(10): 1785-1792. |
49 | SEKINE Yasushi, Manabe RYO. Reaction mechanism of low-temperature catalysis by surface protonics in an electric field[J]. Faraday Discussions, 2021, 229: 341-358. |
50 | SEKINE Yasushi, HARAGUCHI Masayuki, TOMIOKA Masahiko, et al. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field[J]. The Journal of Physical Chemistry A, 2010, 114(11): 3824-3833. |
51 | SEKINE Yasushi, HARAGUCHI Masayuki, MATSUKATA Masahiko, et al. Low temperature steam reforming of methane over metal catalyst supported on Ce x Zr1- x O2 in an electric field[J]. Catalysis Today, 2011, 171(1): 116-125. |
52 | MANABE R, OKADA S, INAGAKI R, et al. Surface protonics promotes catalysis[J]. Scientific Reports, 2016, 6: 38007. |
53 | OKADA S, MANABE R, INAGAKI R, et al. Methane dissociative adsorption in catalytic steam reforming of methane over Pd/CeO2 in an electric field[J]. Catalysis Today, 2018, 307: 272-276. |
54 | OSHIMA Kazumasa, SHINAGAWA Tatsuya, HARAGUCHI Masayuki, et al. Low temperature hydrogen production by catalytic steam reforming of methane in an electric field[J]. International Journal of Hydrogen Energy, 2013, 38(7): 3003-3011. |
55 | MAKI Torimoto, SHUHEI Ogo, DANNY Harjowinoto, et al. Enhanced methane activation on diluted metal-metal ensembles under an electric field: Breakthrough in alloy catalysis[J]. Chemical Communications, 2019, 55(47): 6693-6695. |
56 | MAKI Torimoto, SHUHEI Ogo, YUDAI Hisai, et al. Support effects on catalysis of low temperature methane steam reforming[J]. RSC Advances, 2020, 10(44): 26418-26424. |
57 | TAKAHASHI Ayako, INAGAKI Reona, TORIMOTO Maki, et al. Effects of metal cation doping in CeO2 support on catalytic methane steam reforming at low temperature in an electric field[J]. RSC Advances, 2020, 10(25): 14487-14492. |
58 | NAGAKAWA Kaho, SAMPEI Hiroshi, TAKAHASHI Ayako, et al. Evaluating the effects of OH-groups on the Ni surface on low-temperature steam reforming in an electric field[J]. RSC Advances, 2022, 12(39): 25565-25569. |
59 | 王莉, 敖先权, 王诗瀚. 甲烷与二氧化碳催化重整制取合成气催化剂[J]. 化学进展, 2012, 24(9): 1696-1706. |
WANG Li, AO Xianquan, WANG Shihan. Catalysts for carbon dioxide catalytic reforming of methane to synthesis gas[J]. Progress in Chemistry, 2012, 24(9): 1696-1706. | |
60 | LAVOIE Jean-Michel. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation[J]. Frontiers in Chemistry, 2014, 2: 81. |
61 | OWGI A H K, JALIL A A, AZIZ M A A, et al. The preferable Ni quantity to boost the performance of FSA for dry reforming of methane[J]. Fuel, 2023, 332: 126124. |
62 | ABDULGHANI Abdullah J AL, PARK Jung-Hyun, KOZLOV Sergey M, et al. Methane dry reforming on supported cobalt nanoparticles promoted by boron[J]. Journal of Catalysis, 2020, 392: 126-134. |
63 | Sonali DAS, BHATTAR Srikar, LIU Lina, et al. Effect of partial Fe substitution in La0.9Sr0.1NiO3 perovskite-derived catalysts on the reaction mechanism of methane dry reforming[J]. ACS Catalysis, 2020, 10(21): 12466-12486. |
64 | SINGHA R K, SHUKLA A, SANDUPATLA A, et al. Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane[J]. Journal of Materials Chemistry A, 2017, 5(30): 15688-15699. |
65 | 卢君颖, 郭禹, 刘其瑞, 等. 甲烷二氧化碳重整制合成气钴基催化剂[J]. 化学进展, 2017, 29(12): 1471-1479. |
LU Junying, GUO Yu, LIU Qirui, et al. Co-based catalysts for carbon dioxide reforming of methane to synthesis gas[J]. Progress in Chemistry, 2017, 29(12): 1471-1479. | |
66 | 姜洪涛, 华炜, 计建炳. 甲烷重整制合成气镍催化剂积炭研究[J]. 化学进展, 2013, 25(5): 859-868. |
JIANG Hongtao, HUA Wei, JI Jianbing. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Progress in Chemistry, 2013, 25(5): 859-868. | |
67 | YABE Tomohiro, SEKINE Yasushi. Methane conversion using carbon dioxide as an oxidizing agent: A review[J]. Fuel Processing Technology, 2018, 181: 187-198. |
68 | MAKI Torimoto, SEKINE Yasushi. Effects of alloying for steam or dry reforming of methane: A review of recent studies[J]. Catalysis Science & Technology, 2022, 12(11): 3387-3411. |
69 | ZHANG Ziang, LI Caiting, DU Xueyu, et al. Deciphering exogenous electric field promoting catalysis from the perspectives of electric energy and electron transfer: A review[J]. Chemical Engineering Journal, 2023, 452: 139098. |
70 | NAOYA Nakano, MAKI Torimoto, HIROSHI Sampei, et al. Elucidation of the reaction mechanism on dry reforming of methane in an electric field by in situ DRIFTs[J]. RSC Advances, 2022, 12(15): 9036-9043. |
71 | YABE Tomohiro, MITARAI Kenta, OSHIMA Kazumasa, et al. Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts[J]. Fuel Processing Technology, 2017, 158: 96-103. |
72 | YABE Tomohiro, YAMADA Kensei, MURAKAMI Kota, et al. Role of electric field and surface protonics on low-temperature catalytic dry reforming of methane[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5690-5697. |
73 | AYAKA Motomura, YUKI Nakaya, CLARENCE Sampson, et al. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field[J]. RSC Advances, 2022, 12(44): 28359-28363. |
74 | MOTOMURA Ayaka, TORIMOTO Maki, SAMPSON Clarence, et al. In-situ analysis of alloy effects in low-temperature methane dry reforming in an electric field[J]. Chemistry Letters, 2023, 52(4): 259-262. |
75 | SONG Zhanlong, ZHANG Jianheng, CHEN Kezhen, et al. Research on CH4-CO2 reforming over Ni-Fe catalyst enhanced by electric field[J]. Journal of CO2 Utilization, 2022, 65: 102255. |
76 | 井强山, 方林霞, 楼辉, 等. 甲烷临氧催化转化制合成气研究进展[J]. 化工进展, 2008, 27(4): 503-507. |
JING Qiangshan, FANG Linxia, LOU Hui, et al. Progress of catalytic conversion of methane to syngas in the presence of oxygen[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 503-507. | |
77 | IZQUIERDO U, BARRIO V L, REQUIES J, et al. Tri-reforming: A new biogas process for synthesis gas and hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7623-7631. |
78 | YABE Tomohiro, YAMADA Kensei, OGURI Task, et al. Ni-Mg supported catalysts on low-temperature electrocatalytic tri-reforming of methane with suppressed oxidation[J]. ACS Catalysis, 2018, 8(12): 11470-11477. |
79 | LIU Jiao, YUE Junrong, LV Mei, et al. From fundamentals to chemical engineering on oxidative coupling of methane for ethylene production: A review[J]. Carbon Resources Conversion, 2022, 5(1): 1-14. |
80 | SONG Hui, MENG Xianguang, WANG Zhoujun, et al. Solar-energy-mediated methane conversion[J]. Joule, 2019, 3(7): 1606-1636. |
81 | 王保伟, 许根慧, 刘昌俊, 等. 电促进甲烷偶联合成碳二烃研究进展[J]. 化工进展, 2001, 20(4): 14-18. |
WANG Baowei, XU Genhui, LIU Changjun, et al. Conversion of methane coupling to C2 hydrocarbon by electric promotion[J]. Chemical Industry and Engineering Progress, 2001, 20(4): 14-18. | |
82 | WANG Pengwei, ZHAO Guofeng, WANG Yu, et al. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst[J]. Science Advances, 2017, 3: 1603180. |
83 | Shuhei OGO, SEKINE Yasushi. Catalytic reaction assisted by plasma or electric field[J]. The Chemical Record, 2017, 17(8): 726-738. |
84 | OSHIMA K, TANAKA K, YABE T, et al. Catalytic oxidative coupling of methane with a dark current in an electric field at low external temperature[J]. International Journal of Plasma Environmental Science and Technology, 2012, 6(3): 266-271. |
85 | TANAKA Keisuke, SEKINE Yasushi, OSHIMA Kazumasa, et al. Catalytic oxidative coupling of methane assisted by electric power over a semiconductor catalyst[J]. Chemistry Letters, 2012, 41(4): 351-353. |
86 | OSHIMA Kazumasa, TANAKA Keisuke, YABE Tomohiro, et al. Oxidative coupling of methane using carbon dioxide in an electric field over La-ZrO2 catalyst at low external temperature[J]. Fuel, 2013, 107: 879-881. |
87 | SATO Ayaka, Shuhei OGO, TAKENO Yuna, et al. Electric field and mobile oxygen promote low-temperature oxidative coupling of methane over La1- x Ca x AlO3- δ perovskite catalysts[J]. ACS Omega, 2019, 4(6): 10438-10443. |
88 | YABE Tomohiro, KAMITE Yukiko, SUGIURA Kei, et al. Low-temperature oxidative coupling of methane in an electric field using carbon dioxide over Ca-doped LaAlO3 perovskite oxide catalysts[J]. Journal of CO2 Utilization, 2017, 20: 156-162. |
89 | Shuhei OGO, NAKATSUBO Hideaki, IWASAKI Kousei, et al. Electron-hopping brings lattice strain and high catalytic activity in the low-temperature oxidative coupling of methane in an electric field[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2089-2096. |
90 | SUGIURA Kei, Shuhei OGO, IWASAKI Kousei, et al. Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce-W-O catalyst system[J]. Scientific Reports, 2016, 6: 25154. |
91 | Shuhei OGO, IWASAKI Kousei, SUGIURA Kei, et al. Catalytic oxidative conversion of methane and ethane over polyoxometalate-derived catalysts in electric field at low temperature[J]. Catalysis Today, 2018, 299: 80-85. |
92 | AYAKA Sato, Shuhei OGO, KEIGO Kamata, et al. Ambient-temperature oxidative coupling of methane in an electric field by a cerium phosphate nanorod catalyst[J]. Chemical Communications, 2019, 55(28): 4019-4022. |
93 | HAN Qiao, TANAKA Atsuhiro, MATSUMOTO Masayuki, et al. Conversion of methane to C2 and C3 hydrocarbons over TiO2/ZSM-5 core-shell particles in an electric field[J]. RSC Advances, 2019, 9(60): 34793-34803. |
94 | LUNSFORD Jack H. The catalytic oxidative coupling of methane[J]. Angewandte Chemie International Edition in English, 1995, 34(9): 970-980. |
95 | BORCHERT Holger, BAERNS Manfred. The effect of oxygen-anion conductivity of metal-oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane[J]. Journal of Catalysis, 1997, 168(2): 315-320. |
96 | ZHAO Dan, TIAN Xinxin, DORONKIN Dmitry E, et al. In situ formation of ZnO x species for efficient propane dehydrogenation[J]. Nature, 2021, 599(7884): 234-238. |
97 | FRICKE Charles, RAJBANSHI Biplab, WALKER Eric A, et al. Propane dehydrogenation on platinum catalysts: Identifying the active sites through Bayesian analysis[J]. ACS Catalysis, 2022, 12(4): 2487-2498. |
98 | ZHANG Jianshuo, MA Ruoyun, Hyungwon HAM, et al. Electroassisted propane dehydrogenation at low temperatures: Far beyond the equilibrium limitation[J]. JACS Au, 2021, 1(10): 1688-1693. |
99 | ZHANG Jianshuo, NAKAYA Yuki, SHIMIZU Ken-ichi, et al. Surface engineering of titania boosts electroassisted propane dehydrogenation at low temperature[J]. Angewandte Chemie International Edition, 2023, 62(18): e202300744. |
[1] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[2] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[3] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[4] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[5] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[6] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[7] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[8] | 孙进, 陈晓贞, 刘名瑞, 刘丽, 牛世坤, 郭蓉. 加氢脱硫催化剂钠中毒失活机理[J]. 化工进展, 2024, 43(1): 407-413. |
[9] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[10] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
[11] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[12] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[13] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[14] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[15] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |