化工进展 ›› 2024, Vol. 43 ›› Issue (1): 124-134.DOI: 10.16085/j.issn.1000-6613.2023-1172
• 专栏:化工过程强化 • 上一篇
陈瑶姬1(), 任成瑜2, 胡达清1, 卢晗锋2, 葛春亮1, 崔国凯2()
收稿日期:
2023-07-11
修回日期:
2023-09-18
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
崔国凯
作者简介:
陈瑶姬(1984—),女,博士,高级工程师,研究方向为化工过程强化。E-mail:178540408@qq.com。
基金资助:
CHEN Yaoji1(), REN Chengyu2, HU Daqing1, LU Hanfeng2, GE Chunliang1, CUI Guokai2()
Received:
2023-07-11
Revised:
2023-09-18
Online:
2024-01-20
Published:
2024-02-05
Contact:
CUI Guokai
摘要:
一氧化碳(CO)作为一种有害气体,同时是一种宝贵的C1资源。因此,CO的捕集转化是一个重要的化工过程。离子液体因其独特性质已被广泛应用于气体捕集及转化领域。其一,离子液体作为反应介质,促进一氧化碳(CO)转化。其二,具有功能位点的离子液体基吸收剂可以提高CO捕集容量,促进CO转化。其三,离子液体作为催化剂或助催化剂,促进CO转化。本文从离子液体在CO转化中的3种用途(反应介质、吸收剂、催化剂/助催化剂)出发并对适宜的转化反应进行规律性分类总结,综述了离子液体、离子液体基混合溶剂、离子液体基杂化材料强化CO转化的研究进展。离子液体强化的CO转化反应包括酰化、酯化、开环加成、烯烃加成、聚合等。系统地总结了应用于CO转化的离子液体的结构,分析了离子液体基混合溶剂和离子液体基杂化材料在CO转化中的作用机理、影响因素等,最后提出离子液体强化CO转化存在的问题及未来趋势。
中图分类号:
陈瑶姬, 任成瑜, 胡达清, 卢晗锋, 葛春亮, 崔国凯. 离子液体强化一氧化碳转化[J]. 化工进展, 2024, 43(1): 124-134.
CHEN Yaoji, REN Chengyu, HU Daqing, LU Hanfeng, GE Chunliang, CUI Guokai. Carbon monoxide conversion via ionic liquids intensification[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 124-134.
1 | TU Zhuoheng, ZHANG Yiyang, WU Youting, et al. Self-enhancement of CO reversible absorption accompanied by phase transition in protic chlorocuprate ionic liquids for effective CO separation from N2 [J]. Chemical Communications, 2019, 55(23): 3390-3393. |
2 | ZHU Can, LIU Jie, LI Manbo, et al. Palladium-catalyzed oxidative dehydrogenative carbonylation reactions using carbon monoxide and mechanistic overviews[J]. Chemical Society Reviews, 2020, 49(2): 341-353. |
3 | CLARK E L. Enhancing carbon utilization[J]. Nature Energy, 2023, 8(2): 119-120. |
4 | SUN Qian, ZHAO Yong, TAN Xin, et al. Atomically dispersed Cu-Au alloy for efficient electrocatalytic reduction of carbon monoxide to acetate[J]. ACS Catalysis, 2023, 13(8): 5689-5696. |
5 | ZHAO Tianxiang, YANG Xiaoqing, TU Zhuoheng, et al. Efficient SO2 capture and conversion to cyclic sulfites by protic ionic liquid-based deep eutectic solvents under mild conditions[J]. Separation and Purification Technology, 2023, 318: 123981. |
6 | CUI Guokai, Shuzhen LYU, WANG Huiyong, et al. Tuning the structure of pyridinolate-based functional ionic liquids for highly efficient SO2 absorption[J]. Fuel, 2021, 303: 121311. |
7 | HOU Yucui, ZHANG Qi, GAO Minjie, et al. Absorption and conversion of SO2 in functional ionic liquids: Effect of water on the Claus reaction[J]. ACS Omega, 2022, 7(12): 10413-10419. |
8 | CHEN Yu, MU Tiancheng. Conversion of CO2 to value-added products mediated by ionic liquids[J]. Green Chemistry, 2019, 21(10): 2544-2574. |
9 | XU Yisha, ZHANG Ruina, ZHOU Ying, et al. Tuning ionic liquid-based functional deep eutectic solvents and other functional mixtures for CO2 capture[J]. Chemical Engineering Journal, 2023, 463: 142298. |
10 | ZHANG Ruina, KE Quanli, ZHANG Zekai, et al. Tuning functionalized ionic liquids for CO2 capture[J]. International Journal of Molecular Sciences, 2022, 23(19): 11401. |
11 | 崔国凯, 吕书贞, 王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25. |
CUI Guokai, Shuzhen LYU, WANG Jianji. Functional ionic liquids for carbon dioxide capture and separation[J]. CIESC Journal, 2020, 71(1): 16-25. | |
12 | 常斐, 詹国雄, 史森森, 等. 离子液体电还原CO2合成甲醇过程评价与分析[J]. 化工进展, 2022, 41(3): 1256-1264. |
CHANG Fei, ZHAN Guoxiong, SHI Sensen, et al. Process assessment for electroreduction CO2 to methanol in ionic liquid electrolyte[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1256-1264. | |
13 | TAHERI M, ZHU Ruisong, YU Gangqiang, et al. Ionic liquid screening for CO2 capture and H2S removal from gases: The syngas purification case[J]. Chemical Engineering Science, 2021, 230: 116199. |
14 | LI Fangfang, LAAKSONEN A, ZHANG Xiangping, et al. Rotten eggs revaluated: Ionic liquids and deep eutectic solvents for removal and utilization of hydrogen sulfide[J]. Industrial & Engineering Chemistry Research, 2022, 61(7): 2643-2671. |
15 | WANG Bo, XIE Xuhao, WAN Lurui, et al. H2S absorption with deep eutectic solvents: Low partial pressure capture and thermodynamic analysis[J]. AIChE Journal, 2023, 69(7): e18087. |
16 | ZHANG Xiaomin, XIONG Wenjie, PENG Lingling, et al. Highly selective absorption separation of H2S and CO2 from CH4 by novel azole-based protic ionic liquids[J]. AIChE Journal, 2020, 66(6): e16936. |
17 | LIU Jiajia, XU Yingjie. NO x absorption and conversion by ionic liquids[J]. Journal of Hazardous Materials, 2021, 409: 124503. |
18 | WANG Shenyao, Xiaoyu LYU, ZHAO Zhenyu, et al. Highly efficient and reversible absorption and oxidation of low-concentration nitric oxide by functionalized ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(20): 7154-7159. |
19 | CHEN Kaihong, SHI Guiling, ZHOU Xiuyuan, et al. Highly efficient nitric oxide capture by azole-based ionic liquids through multiple-site absorption[J]. Angewandte Chemie International Edition, 2016, 55(46): 14364-14368. |
20 | SUN Xueqi, LI Guilin, ZENG Shaojuan, et al. Ultra-high NH3 absorption by triazole cation-functionalized ionic liquids through multiple hydrogen bonding[J]. Separation and Purification Technology, 2023, 307: 122825. |
21 | QIU Rongxing, LUO Xiaoyan, YANG Le, et al. Regulated threshold pressure of reversibly sigmoidal NH3 absorption isotherm with ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1637-1643. |
22 | ZHONG Fuyu, PENG Hailong, TAO Duanjian, et al. Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3 [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3258-3266. |
23 | LIU Ping, CAI Kaixing, LIU Mao, et al. Exceptionally effective H2S absorption and conversion into thiols in novel superbase protic ionic liquids[J]. AIChE Journal, 2023, 69(4): e17944. |
24 | ZHAO Zhijun, GAO Jubao, LUO Mingsheng, et al. Molecular simulation and experimental study on low-viscosity ionic liquids for high-efficient capturing of CO2 [J]. Energy & Fuels, 2022, 36(3): 1604-1613. |
25 | CUI Guokai, XU Yisha, HU Daqing, et al. Tuning functional ionic deep eutectic solvents as green sorbents and catalysts for highly efficient capture and transformation of CO2 to quinazoline-2,4(1H,3H)-dione and its derivatives[J]. Chemical Engineering Journal, 2023, 469: 143991. |
26 | CUI Guokai, JIANG Kang, LIU Huayan, et al. Highly efficient CO removal by active cuprous-based ternary deep eutectic solvents [HDEEA][Cl]+CuCl+EG[J]. Separation and Purification Technology, 2021, 274: 118985. |
27 | PENG Lingling, SHI Mingzhen, PAN Yi, et al. Ultrahigh carbon monoxide capture by novel protic cuprous-functionalized dicationic ionic liquids through complexation interactions[J]. Chemical Engineering Journal, 2023, 451: 138519. |
28 | TAO Duanjian, AN Xuecong, GAO Ziteng, et al. Cuprous-based composite ionic liquids for the selective absorption of CO: Experimental study and thermodynamic analysis[J]. AIChE Journal, 2022, 68(5): e17631. |
29 | 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147. |
LIU Jiajia, FU Xue, XU Yingjie. Progress on carbon monoxide removal using ionic liquids[J]. CIESC Journal, 2020, 71(1): 138-147. | |
30 | WANG Xiaofang, LI Peng, YUAN Xiaohua, et al. Synthesis of symmetrical 1,3-diarylureas by sulfur-catalyzed carbonylation in ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2006, 255(1/2): 25-27. |
31 | TAO Duanjian, CHEN Fengfeng, TIAN Ziqi, et al. Back cover: Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions[J]. Angewandte Chemie International Edition, 2017, 56(24): 7004. |
32 | RAJENDIRAN S, PARK Kwangho, LEE Kwangyeol, et al. Ionic-liquid-based heterogeneous covalent triazine framework cobalt catalyst for the direct synthesis of methyl 3-hydroxybutyrate from propylene oxide[J]. Inorganic Chemistry, 2017, 56(12): 7270-7277. |
33 | BI Kailun, XU Baohua, DING Weilu, et al. Mechanism of CO2 reduction in carbonylation reaction promoted by ionic liquid additives: A computational and experimental study[J]. Green Energy & Environment, 2023, 8(1): 296-307. |
34 | LIU Yichang, CHEN Yi-Hung, YI Hong, et al. An update on oxidative C—H carbonylation with CO[J]. ACS Catalysis, 2022, 12(13): 7470-7485. |
35 | PENG Jinbao, GENG Huiqing, WU Xiaofeng. The chemistry of CO: Carbonylation[J]. Chem, 2019, 5(3): 526-552. |
36 | 宋河远, 康美荣, 靳荣华, 等. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327. |
SONG Heyuan, KANG Meirong, JIN Ronghua, et al. Application of ionic liquids to the carbonylation reactions[J]. Progress in Chemistry, 2016, 28(9): 1313-1327. | |
37 | MIZUSHIMA E, HAYASHI T, TANAKA M. Palladium-catalysed carbonylation of aryl halides inionic liquid media: High catalyst stability and significantrate-enhancement in alkoxycarbonylation[J]. Green Chemistry, 2001, 3(2): 76-79. |
38 | MÜLLER E, PÉCZELY G, SKODA-FÖLDES R, et al. Homogeneous catalytic aminocarbonylation of iodoalkenes and iodobenzene with amino acid esters under conventional conditions and in ionic liquids[J]. Tetrahedron, 2005, 61(4): 797-802. |
39 | SKODA-FÖLDES R, TAKÁCS E, HORVÁTH J, et al. Palladium-catalysed aminocarbonylation of steroidal 17-iodo-androst-16-ene derivatives in N,N′-dialkyl-imidazolium-type ionic liquids[J]. Green Chemistry, 2003, 5(5): 643-645. |
40 | KHEDKAR M V, SASAKI T, BHANAGE B M. Immobilized palladium metal-containing ionic liquid-catalyzed alkoxycarbonylation, phenoxycarbonylation, and aminocarbonylation reactions[J]. ACS Catalysis, 2013, 3(3): 287-293. |
41 | ANILKUMAR S, GADGE S T, KUSUMAWATI E N, et al. Synthesis of polyester amide by carbonylation-polycondensation reaction using immobilized palladium metal containing ionic liquid on SBA-15 as a phosphine-free catalytic system[J]. Catalysis Letters, 2015, 145(3): 824-833. |
42 | ADAMCSIK B, NAGY E, URBÁN B, et al. Palladium nanoparticles on a pyridinium supported ionic liquid phase: A recyclable and low-leaching palladium catalyst for aminocarbonylation reactions[J]. RSC Advances, 2020, 10(40): 23988-23998. |
43 | PAPP M, SZABÓ P, SRANKÓ D, et al. Solvent-free aminocarbonylation of iodobenzene in the presence of SILP-palladium catalysts[J]. RSC Advances, 2016, 6(51): 45349-45356. |
44 | PAPP M, URBÁN B, DROTÁR E, et al. Mono- and double carbonylation of iodobenzene in the presence of reusable supported palladium catalysts[J]. Green Processing and Synthesis, 2015, 4(2): 103-115. |
45 | SHI Feng, ZHANG Qinghua, GU Yanlong, et al. Silica gel confined ionic liquid+metal complexes for oxygen-free carbonylation of amines and nitrobenzene to ureas[J]. Advanced Synthesis & Catalysis, 2005, 347(2/3): 225-230. |
46 | 刘长春. 离子液体中催化羰基化合成氟代苯氨基甲酸酯[J]. 化学世界, 2013, 54(4): 223-226. |
LIU Changchun. Synthesis of fluorophenyl carbamates by catalytic carbonylation in ionic liquid[J]. Chemical World, 2013, 54(4): 223-226. | |
47 | TIAN Fengshou, CHEN Yahong, WANG Xiaofang, et al. Oxidative carbonylation of aromatic amines with CO catalyzed by 1,3-dialkylimidazole-2-selenone in ionic liquids[J]. Journal of Chemistry, 2015, 2015: 1-5. |
48 | MILANI B, ANZILUTTI A, VICENTINI L, et al. Bis-chelated palladium(Ⅱ) complexes with nitrogen-donor chelating ligands are efficient catalyst precursors for the CO/styrene copolymerization reaction[J]. Organometallics, 1997, 16(23): 5064-5075. |
49 | HARDACRE C, HOLBREY J D, KATDARE S P, et al. Alternating copolymerisation of styrene and carbon monoxide in ionic liquids[J]. Green Chemistry, 2002, 4(2): 143-146. |
50 | TIAN Jing, GUO Jintang, ZHU Chengcai, et al. Pd(Ⅱ) catalyzed copolymerization of styrene and CO in quaternary ammonium ionic liquids[J]. Macromolecular Research, 2009, 17(3): 144-148. |
51 | 郭锦棠, 朱成才, 田晶, 等. 一种新的离子液体在一氧化碳和苯乙烯共聚反应中的应用[J]. 化工学报, 2008, 59(2): 497-502. |
GUO Jintang, ZHU Chengcai, TIAN Jing, et al. Application of novel ionic liquid in copolymerization of carbon monoxide and styrene[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(2): 497-502. | |
52 | KLINGSHIRN M A, ROGERS R D, SHAUGHNESSY K H. Palladium-catalyzed hydroesterification of styrene derivatives in the presence of ionic liquids[J]. Journal of Organometallic Chemistry, 2005, 690(15): 3620-3626. |
53 | RANGITS G, KOLLÁR L. Palladium catalysed hydroethoxycarbonylation in imidazolium-based ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246(1/2): 59-64. |
54 | LAPIDUS A L, ELISEEV O L, BONDARENKO T N, et al. Manufacture of C13 higher fatty acids from their esters by carbonylation of dodecene-1 in ionic liquid medium[J]. Petroleum Chemistry, 2010, 50(6): 442-449. |
55 | HAUMANN M, RIISAGER A. Hydroformylation in room temperature ionic liquids (RTILs): Catalyst and process developments[J]. Chemical Reviews, 2008, 108(4): 1474-1497. |
56 | DIAO Yanyan, LI Jing, WANG Ling, et al. Ethylene hydroformylation in imidazolium-based ionic liquids catalyzed by rhodium-phosphine complexes[J]. Catalysis Today, 2013, 200: 54-62. |
57 | KOLBECK C, PAAPE N, CREMER T, et al. Ligand effects on the surface composition of Rh-containing ionic liquid solutions used in hydroformylation catalysis[J]. Chemistry: A European Journal, 2010, 16(40): 12083-12087. |
58 | JIN Xin, YANG Daoxing, XU Xinfu, et al. Super long-term highly active and selective hydroformylation in a room temperature-solidifiable guanidinium ionic liquid with a polyether tag[J]. Chemical Communications, 2012, 48(72): 9017-9019. |
59 | TAO Duanjian, QU Feng, LI Zhangmin, et al. Promoted absorption of CO at high temperature by cuprous-based ternary deep eutectic solvents[J]. AIChE Journal, 2021, 67(2): e17106. |
60 | GUO Zhenmei, WANG Hengsheng, Zhiguo LYU, et al. Catalytic performance of [Bmim][Co(CO)4] functional ionic liquids for preparation of 1,3-propanediol by coupling of hydroesterification-hydrogenation from ethylene oxide[J]. Journal of Organometallic Chemistry, 2011, 696(23): 3668-3672. |
61 | ZHANG Wei, HAN Feng, TONG Jin, et al. Cobalt carbonyl ionic liquids based on the 1,1,3,3-tetra-alkylguanidine cation: Novel, highly efficient, and reusable catalysts for the carbonylation of epoxides[J]. Chinese Journal of Catalysis, 2017, 38(5): 805-812. |
62 | Zhiguo LYU, JIANG Yongfei, ZHOU Chao, et al. Synthesis and evaluation of stable, efficient, and recyclable carbonylation catalysts: Polyether-substituted lmidazolium carbonyl cobalt lonic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2016, 415: 89-95. |
63 | WU Lipeng, LIU Qiang, JACKSTELL R, et al. Ruthenium-catalyzed alkoxycarbonylation of alkenes using carbon monoxide[J]. Organic Chemistry Frontiers, 2015, 2(7): 771-774. |
64 | LI Yongqi, LIU Huan, WANG Peng, et al. Immobilization of a rhodium catalyst using a diphosphine-functionalized ionic liquid in RTIL for the efficient and recyclable biphasic hydroformylation of 1-octene[J]. Faraday Discussions, 2016, 190(0): 219-230. |
65 | JIN Xin, FENG Jianying, MA Qingqing, et al. Correction: Integration of a phosphine ligand into an ionic liquid: A highly effective biphasic system for the Rh-catalyzed hydroformylation of 1-octene[J]. Green Chemistry, 2019, 21(22): 6221. |
66 | ZICCARELLI I, MANCUSO R, GIACALONE F, et al. Heterogenizing palladium tetraiodide catalyst for carbonylation reactions[J]. Journal of Catalysis, 2022, 413: 1098-1110. |
67 | LI Jianxiao, YU Junsheng, XIONG Wenfang, et al. A palladium-catalyzed oxidative aminocarbonylation reaction of alkynone O-methyloximes with amines and CO in PEG-400[J]. Green Chemistry, 2020, 22(2): 465-470. |
68 | WANG Hui, WANG Bo, LIU Chunling, et al. Oxidative carbonylation of methanol over copper ion-containing ionic liquids immobilized on SBA-15[J]. Microporous and Mesoporous Materials, 2010, 134(1/2/3): 51-57. |
69 | SCHNEIDER M J, HAUMANN M, STRICKER M, et al. Gas-phase oxycarbonylation of methanol for the synthesis of dimethyl carbonate using copper-based supported ionic liquid phase (SILP) catalysts[J]. Journal of Catalysis, 2014, 309: 71-78. |
70 | KUSTOV L M, TARASOV A L. Fischer-Tropsch synthesis in a slurry mode using ionic liquids[J]. Catalysis Communications, 2016, 75: 42-44. |
[1] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[2] | 苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110. |
[3] | 翟霖晓, 崔怡洲, 李成祥, 石孝刚, 高金森, 蓝兴英. 微气泡发生器的研究与应用进展[J]. 化工进展, 2024, 43(1): 111-123. |
[4] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[5] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[11] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[12] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[15] | 李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |