化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1851-1862.DOI: 10.16085/j.issn.1000-6613.2023-0525
• 工业催化 • 上一篇
高飞1(), 刘志松1, 潘珂珂1, 刘敏敏1, 代斌1(), 但建明1(), 于锋1,2()
收稿日期:
2023-04-06
修回日期:
2023-06-11
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
代斌,但建明,于锋
作者简介:
高飞(1998—),男,硕士研究生,研究方向为氮氧化物脱除。E-mail:1138896836@qq.com。
基金资助:
GAO Fei1(), LIU Zhisong1, PAN Keke1, LIU Minmin1, DAI Bin1(), DAN Jianming1(), YU Feng1,2()
Received:
2023-04-06
Revised:
2023-06-11
Online:
2024-04-15
Published:
2024-05-13
Contact:
DAI Bin, DAN Jianming, YU Feng
摘要:
以CO为还原剂去除NO的选择性催化还原(CO-SCR)技术受到了广泛关注。本文以天然矿物蛭石为载体,采用共沉淀辅助浸渍法(CP-IM)制备了蛭石负载的铁铈双金属氧化物(FeCe/VMT)用于CO-SCR脱硝反应。表征结果显示,相比传统的浸渍法(IM),共沉淀辅助浸渍制备的FeCe/VMT催化剂具有更大的比表面积(106.9m2/g)和更多氧空位,可以提供更多的活性位点。共沉淀过程形成更多Fe3+,并促进了FeCe间的协同作用,有利于提高CO-SCR的催化活性和稳定性。性能测试表明,在300℃和50000h-1的空速下,NO转化率可达100%,48h后NO转化率几乎无衰减。当温度降至250℃时,NO的转化率依然可以达到97%。同时,利用原位红外光谱和密度泛函理论计算技术,揭示了相应的催化反应机理,为制备大比表面积的负载型催化剂提供了一种方法。
中图分类号:
高飞, 刘志松, 潘珂珂, 刘敏敏, 代斌, 但建明, 于锋. 蛭石基FeCeO x 催化剂及CO选择性催化还原NO[J]. 化工进展, 2024, 43(4): 1851-1862.
GAO Fei, LIU Zhisong, PAN Keke, LIU Minmin, DAI Bin, DAN Jianming, YU Feng. Vermiculite-supported FeCe bimetallic catalyst for selective catalytic reduction of NO with CO[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1851-1862.
样品 | 结合能/eV | 表面离子浓度比/% | ||||
---|---|---|---|---|---|---|
Ce3+ | Oβ | Fe3+/(Fe2++Fe3+) | Ce3+/(Ce3++Ce4+) | Oβ/(Oα+Oβ+Oγ) | ||
FeCe/VMT(IM) | 884.6 | 903.2 | 531.5 | 13.7 | 21.9 | 24.0 |
FeCe/VMT(CP-IM) | 884.4 | 902.9 | 531.1 | 33.5 | 30.1 | 29.3 |
表1 结合能和相对表面原子浓度
样品 | 结合能/eV | 表面离子浓度比/% | ||||
---|---|---|---|---|---|---|
Ce3+ | Oβ | Fe3+/(Fe2++Fe3+) | Ce3+/(Ce3++Ce4+) | Oβ/(Oα+Oβ+Oγ) | ||
FeCe/VMT(IM) | 884.6 | 903.2 | 531.5 | 13.7 | 21.9 | 24.0 |
FeCe/VMT(CP-IM) | 884.4 | 902.9 | 531.1 | 33.5 | 30.1 | 29.3 |
样品 | 峰位置/℃ | ||||
---|---|---|---|---|---|
峰0 | 峰1 | 峰2 | 峰3 | 峰4 | |
FeCe/VMT(IM) | — | 403.8 | 465.8 | 564.2 | 795.9 |
FeCe/VMT(CP-IM) | 306.9 | 346.7↓ | 427.5↓ | 622.9↑ | 778.4↓ |
表2 H2-TPR化学吸附峰位置
样品 | 峰位置/℃ | ||||
---|---|---|---|---|---|
峰0 | 峰1 | 峰2 | 峰3 | 峰4 | |
FeCe/VMT(IM) | — | 403.8 | 465.8 | 564.2 | 795.9 |
FeCe/VMT(CP-IM) | 306.9 | 346.7↓ | 427.5↓ | 622.9↑ | 778.4↓ |
催化剂 | 反应条件 | 温度/℃ | NO转化率/% | 参考文献 |
---|---|---|---|---|
CeO2/Fe2O3 | 2000μL/L CO, 500μL/L NO, 总流量=500mL/min, 0.5g催化剂, N2 | 600 | 90 | [ |
Cu/CeO2 | 600μL/L NO, 600μL/L CO, 60μL/L SO2, 1000μL/L O2, GHSV = 36000h-1, N2 | 350 | 100 | [ |
Cu-Ce/BTC | 1000μL/L NO, 1000μL/L CO, GHSV=30000h-1, He | 300 | 90 | [ |
Co98Ce2 | 1400μL/L NO, 1400μL/L CO, GHSV=6051h-1, N2 | 300 | 100 | [ |
FeCe/VMT | 500μL/L NO, 1000μL/L CO, 1%(体积分数)O2, 5%(体积分数)H2O, GHSV=50000h-1, N2 | 250 | 98 | 本工作 |
表3 Ce基负载型催化剂在CO-SCR中的应用
催化剂 | 反应条件 | 温度/℃ | NO转化率/% | 参考文献 |
---|---|---|---|---|
CeO2/Fe2O3 | 2000μL/L CO, 500μL/L NO, 总流量=500mL/min, 0.5g催化剂, N2 | 600 | 90 | [ |
Cu/CeO2 | 600μL/L NO, 600μL/L CO, 60μL/L SO2, 1000μL/L O2, GHSV = 36000h-1, N2 | 350 | 100 | [ |
Cu-Ce/BTC | 1000μL/L NO, 1000μL/L CO, GHSV=30000h-1, He | 300 | 90 | [ |
Co98Ce2 | 1400μL/L NO, 1400μL/L CO, GHSV=6051h-1, N2 | 300 | 100 | [ |
FeCe/VMT | 500μL/L NO, 1000μL/L CO, 1%(体积分数)O2, 5%(体积分数)H2O, GHSV=50000h-1, N2 | 250 | 98 | 本工作 |
1 | LI Yanqin, JIANG Pan, TIAN Junqi, et al. 3D-printed monolithic catalyst of Mn-Ce-Fe/attapulgite for selective catalytic reduction of nitric oxide with ammonia at low temperature[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105753. |
2 | LI Xiazhang, WANG Zhendong, CHU Xini, et al. Broad spectrum photo-driven selective catalytic reduction of NO over CeO2-CeVO4/palygorskite nanocomposite with enhanced SO2 tolerance[J]. Applied Clay Science, 2020, 199: 105871 |
3 | KAPKOWSKI Maciej, SIUDYGA Tomasz, SITKO Rafal, et al. Toward a viable ecological method for regenerating a commercial SCR catalyst-Selectively leaching surface deposits and reconstructing a pore landscape[J]. Journal of Cleaner Production, 2021, 316: 128291. |
4 | ZHANG Tiejun, LI Jian, HE Hong, et al. NO oxidation over Co-La catalysts and NO reduction in compact SCR[J]. Frontiers of Environmental Science & Engineering, 2017, 11(2): 4. |
5 | SMOLDERS Simon, JACOBSEN Jannick, STOCK Norbert, et al. Selective catalytic reduction of NO by cerium-based metal-organic frameworks[J]. Catalysis Science & Technology, 2020, 10(2): 337-341. |
6 | PU Yijuan, XIE Xinyu, JIANG Wenju, et al. Low-temperature selective catalytic reduction of NO x with NH3 over zeolite catalysts: A review[J]. Chinese Chemical Letters, 2020, 31(10): 2549-2555. |
7 | PAN Keke, YU Feng, LIU Zhisong, et al. Enhanced low-temperature CO-SCR denitration performance and mechanism of two-dimensional CuCoAl layered double oxide[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108030. |
8 | SAVEREIDE Louisa, NAUERT Scott L, ROBERTS Charles A, et al. The effect of support morphology on CoO x /CeO2 catalysts for the reduction of NO by CO[J]. Journal of Catalysis, 2018, 366: 150-158. |
9 | BAI Yuting, BIAN Xue, WU Wenyuan. Catalytic properties of CuO/CeO2-Al2O3 catalysts for low concentration NO reduction with CO[J]. Applied Surface Science, 2019, 463: 435-444. |
10 | TANG Changjin, SUN Bowen, SUN Jingfang, et al. Solid state preparation of NiO-CeO2 catalyst for NO reduction[J]. Catalysis Today, 2017, 281: 575-582. |
11 | SUN Jingfang, GE Chengyan, YAO Xiaojiang, et al. Influence of different impregnation modes on the properties of CuOCeO2/γ-Al2O3 catalysts for NO reduction by CO[J]. Applied Surface Science, 2017, 426: 279-286. |
12 | LIU Lianjun, YAO Zhijian, LIU Bin, et al. Correlation of structural characteristics with catalytic performance of CuO/Ce x Zr1- x O2 catalysts for NO reduction by CO[J]. Journal of Catalysis, 2010, 275(1): 45-60. |
13 | QIAN Junning, HOU Xueyan, QIN Zuzeng, et al. Enhanced catalytic properties of Cu-based composites for NO x reduction with coexistence and intergrowth effect[J]. Fuel, 2018, 234: 296-304. |
14 | Pavel JANOŠ, Tomáš HLADÍK, KORMUNDA Martin, et al. Thermal treatment of cerium oxide and its properties: Adsorption ability versus degradation efficiency[J]. Advances in Materials Science and Engineering, 2014, 2014: 706041. |
15 | WAN Yinji, TIAN Junqi, QIAN Gang, et al. Ultralow specific surface area vermiculite supporting Mn-Ce-Fe mixed oxides as “curling catalysts” for selective catalytic reduction of NO with NH3 [J]. Green Chemical Engineering, 2021, 2(3): 284-293. |
16 | SUN Peiliang, CHENG Xingxing, LAI Yanhua, et al. N-Doped FeCo/ASC catalysts for NO x reduction by CO in a simulated rotary reactor[J]. Catalysis Science & Technology, 2019, 9(16): 4429-4440. |
17 | LIU Zhisong, YU Feng, PAN Keke, et al. Two-dimensional vermiculite carried CuCoCe catalysts for CO-SCR in the presence of O2 and H2O: Experimental and DFT calculation[J]. Chemical Engineering Journal, 2021, 422: 130099. |
18 | LIU Tangkang, QIAN Junning, YAO Yanyan, et al. Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: Effect of the grinding[J]. Molecular Catalysis, 2017, 430: 43-53. |
19 | DU Xuexun, DAI Qiguang, WEI Qinglian, et al. Nanosheets-assembled Ni (Co) doped CeO2 microspheres toward NO + CO reaction[J]. Applied Catalysis A: General, 2020, 602: 117728. |
20 | DENG Changshun, HUANG Qingqing, ZHU Xiying, et al. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction[J]. Applied Surface Science, 2016, 389: 1033-1049. |
21 | SUN Ruobing, YU Feng, WAN Yinji, et al. Reducing N2O formation over CO-SCR systems with CuCe mixed metal oxides[J]. ChemCatChem, 2021, 13(11): 2709-2718. |
22 | LIU Hao, LIANG Qiuxia, LIU Jiaxing, et al. Promotional mechanism of activity via three-dimensional ordered macroporous Cu-doped Ce-Fe mixed oxides for the CO-SCR reaction[J]. Environmental Science: Nano, 2020, 7(10): 3136-3154. |
23 | GUAN Yu, LIU Yinhe, Qiang LYU, et al. Fe decorated CeO2 microsphere catalyst with surface oxygen defect for NO reduction by CO[J]. Molecular Catalysis, 2021, 516: 111973. |
24 | ZHANG Xuejun, ZHAO Min, SONG Zhongxian, et al. The effect of different metal oxides on the catalytic activity of a Co3O4 catalyst for toluene combustion: Importance of the structure–property relationship and surface active species[J]. New Journal of Chemistry, 2019, 43(27): 10868-10877. |
25 | WANG Defu, HUANG Bangfu, SHI Zhe, et al. Influence of cerium doping on Cu-Ni/activated carbon low-temperature CO-SCR denitration catalysts[J]. RSC Advances, 2021, 11(30): 18458-18467. |
26 | LIU Zhisong, YU Feng, DONG Dong, et al. Transition-metal-doped ceria carried on two-dimensional vermiculite for selective catalytic reduction of NO with CO: Experiments and density functional theory[J]. Applied Surface Science, 2021, 566: 150704. |
27 | LI Jianjie, SUN Peiliang, CHENG Xingxing, et al. A novel integrated rotary reactor for NO reduction by CO and air preheating: Reactor design and heat transfer modelling[J]. Applied Thermal Engineering, 2021, 190: 116815. |
28 | NIU Xiaoran, LEI Zuotao, YANG Chunhui. Catalytic NO reduction by CO over ceria-cobalt oxide catalysts[J]. New Journal of Chemistry, 2019, 43(47): 18611-18618. |
29 | SONG Zhongxian, XING Yun, ZHANG Xuejun, et al. Silicotungstic acid modified Ce-Fe-O x catalyst for selective catalytic reduction of NO x with NH3: Effect of the amount of HSiW[J]. Applied Organometallic Chemistry, 2019, 33(10): e5160. |
30 | BAI Yuze, WU Huizhong, ZHU Jinhao, et al. Influence of lattice oxygen on properties of Ce-Fe composite in NO+CO reduction system[J]. Materials Express, 2020, 10(8): 1292-1299. |
31 | LIU Kaijie, YU Qingbo, QIN Qin, et al. Selective catalytic reduction of nitric oxide with carbon monoxide over alumina-pellet-supported catalysts in the presence of excess oxygen[J]. Environmental Technology, 2018, 39(15): 1878-1885. |
32 | SONG Zhongxian, YIN Liangtao, ZHANG Qiulin, et al. Relationship between the WO3 states and reaction pathway over CeO2-ZrO2-WO3 catalysts for selective catalytic reduction of NO with NH3 [J]. Molecular Catalysis, 2017, 437: 95-104. |
33 | WANG Luyuan, CHENG Xingxing, WANG Zhiqiang, et al. Reaction of NO + CO over Ce-modified Cu-FeO x catalysts at low temperature[J]. Energy & Fuels, 2019, 33(11): 11688-11704. |
34 | CHENG Xingxing, ZHANG Xingyu, SU Dexin, et al. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: Catalyst design and activity test[J]. Applied Catalysis B: Environmental, 2018, 239: 485-501. |
35 | SUN Peiliang, CHENG Xingxing, LAI Yanhua, et al. NO x reduction by CO over ASC catalysts in a simulated rotary reactor: Effect of CO2, H2O and SO2 [J]. RSC Advances, 2018, 8(64): 36604-36615. |
36 | GAN Linali, YANG Kezhi, CHEN Weinan, et al. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: Promoted activity and SO2 tolerance [J]. Chemical Engineering Journal, 2020, 391:123473. |
37 | SONG Yongji, WANG Ting, CHENG Liang, et al. Simultaneous removal of SO2 and NO by CO reduction over prevulcanized Fe2O3/AC catalysts[J]. The Canadian Journal of Chemical Engineering, 2019, 97(7): 2015-2020. |
38 | WANG Zhiqiang, WANG Luyuan, CHENG Xingxing, et al. Investigation of SO2 tolerance of Ce-modified activated semi-coke based catalysts for the NO + CO reaction[J]. RSC Advances, 2017, 7(84): 53631-53642. |
39 | ZENG Jie, ZHONG Xuemei, YU Jie, et al. Promotional effect of preparation methods on catalytic reduction of NO by CO over CoCeO x catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(1): 34-41. |
40 | SALKER A V, M S Fal DESAI. CO-NO/O2 redox reactions over Cu substituted cobalt oxide spinels[J]. Catalysis Communications, 2016, 87: 116-119. |
41 | ZHANG Yu, ZHAO Ling, DUAN Jun, et al. Insights into deNO x processing over Ce-modified Cu-BTC catalysts for the CO-SCR reaction at low temperature by in situ DRIFTS[J]. Separation and Purification Technology, 2020, 234: 116081. |
42 | Byeong Jun CHA, KIM Il Hee, PARK Chan Heum, et al. Reduction of NO by CO catalyzed by Fe-oxide/Al2O3: Strong catalyst-support interaction for enhanced catalytic activity[J]. Applied Surface Science, 2020, 509: 145300. |
43 | WANG Huaijian, HUANG Bichun, YU Chenglong, et al. Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis A: General, 2019, 588: 117207. |
44 | ZHANG Shuhao, KIM Taejin. Effects of iron precursor and loading on the catalytic performance of FeO x /CeO2 catalysts for NO reduction by CO[J]. Molecular Catalysis, 2020, 494: 111123. |
45 | ZHANG Yu, ZHAO Ling, KANG Mengdi, et al. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance[J]. Chemical Engineering Journal, 2021, 426: 131873. |
46 | YE Xue, MA Shenggui, JIANG Xia, et al. The adsorption of acidic gaseous pollutants on metal and nonmetallic surface studied by first-principles calculation: A review[J]. Chinese Chemical Letters, 2019, 30(12): 2123-2131. |
47 | VITYUK Artem D, MA Shuguo, ALEXEEV Oleg S, et al. NO reduction with CO over HY zeolite-supported rhodium dicarbonyl complexes: Giving insight into the structure sensitivity[J]. Reaction Chemistry & Engineering, 2019, 4(2): 418-426. |
48 | LIU Jiaxing, SHI Xiaobin, LIU Hao, et al. Study on the performance of magnetic Co3O4/γ-Fe2O3 catalyst in NO+CO reaction[J]. Applied Surface Science, 2020, 533: 147498. |
49 | WANG Luyuan, CHENG Xingxing, WANG Zhiqiang, et al. NO reduction by CO over iron-based catalysts supported by activated semi-coke[J]. The Canadian Journal of Chemical Engineering, 2017, 95(3): 449-458. |
50 | WEI Longqing, LIU Tangkang, WU Yaohui, et al. Design of co-symbiotic Fe x Mn y O catalysts for NO reduction by CO[J]. Catalysis Science & Technology, 2020, 10(23): 7894-7903. |
[1] | 刘若璐, 汤海波, 何翡翡, 罗凤盈, 王金鸽, 杨娜, 李洪伟, 张锐明. 液态有机储氢技术研究现状与展望[J]. 化工进展, 2024, 43(4): 1731-1741. |
[2] | 王红妍, 马子然, 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀. 燃煤耦合可再生燃料烟气多污染物协同催化脱除研究进展[J]. 化工进展, 2024, 43(4): 1783-1795. |
[3] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
[4] | 吴晨赫, 刘彧旻, 杨昕旻, 崔记伟, 姜韶堃, 叶金花, 刘乐全. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. |
[5] | 刘雨蓉, 王兴宝, 李文英. 分子筛负载Pt催化剂酸性位点调控及对蒽深度加氢性能的影响[J]. 化工进展, 2024, 43(4): 1832-1839. |
[6] | 郭潇东, 毛玉娇, 刘相洋, 邱丽, 于峰, 闫晓亮. Ni/Sm2O3-CeO2/Al2O3催化剂氧空位对二氧化碳低温甲烷化的影响[J]. 化工进展, 2024, 43(4): 1840-1850. |
[7] | 刘方旺, 韩艺, 张佳佳, 步红红, 王兴鹏, 于传峰, 刘猛帅. CO2与环氧化物耦合制备环状碳酸酯的多相催化体系研究进展[J]. 化工进展, 2024, 43(3): 1252-1265. |
[8] | 张鹏飞, 严张艳, 任亮, 张奎, 梁家林, 赵广乐, 张璠玢, 胡志海. C |
[9] | 谷星朋, 马红钦, 刘嘉豪. 雷尼镍的磷量子点改性及其催化加氢脱硫性能[J]. 化工进展, 2024, 43(3): 1293-1301. |
[10] | 张书铭, 刘化章. 基于BP神经网络模型优化Fe1-x O基氨合成催化剂[J]. 化工进展, 2024, 43(3): 1302-1308. |
[11] | 李开瑞, 高照华, 刘甜甜, 李静, 魏海生. 还原温度调变Rh/FePO4催化剂喹啉选择加氢性能[J]. 化工进展, 2024, 43(3): 1342-1349. |
[12] | 刘斌, 王勇军, 吕汪洋, 陈文兴. 高稳定性钛系聚酯催化剂TiOC@SiO2的制备及应用[J]. 化工进展, 2024, 43(3): 1395-1402. |
[13] | 王雄, 康文倩, 任悦, 乔彤森, 张鹏, 黄安平, 李广全. 多孔有机聚合物中试制备及其在聚烯烃催化剂中的应用[J]. 化工进展, 2024, 43(3): 1412-1417. |
[14] | 闫守成, 张慧华, 徐倩倩, 王煜坤. 石墨烯复合载体催化剂在柴油车尾气NO脱除中的应用[J]. 化工进展, 2024, 43(3): 1456-1465. |
[15] | 董冰岩, 李贞栋, 王佩祥, 涂文娟, 谭艳雯, 张芹. DBD等离子体耦合BiOI催化材料降解苯甲羟肟酸的特性与机制[J]. 化工进展, 2024, 43(3): 1565-1575. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |