化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1840-1850.DOI: 10.16085/j.issn.1000-6613.2023-0571
• 工业催化 • 上一篇
郭潇东1,2(), 毛玉娇1,2, 刘相洋1,2, 邱丽1,2(), 于峰1,2, 闫晓亮1,2()
收稿日期:
2023-04-11
修回日期:
2023-06-15
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
邱丽,闫晓亮
作者简介:
郭潇东(1998—),男,硕士研究生,研究方向为镍基催化剂的设计及甲烷化性能。E-mail:2970988405@qq.com。
基金资助:
GUO Xiaodong1,2(), MAO Yujiao1,2, LIU Xiangyang1,2, QIU Li1,2(), YU Feng1,2, YAN Xiaoliang1,2()
Received:
2023-04-11
Revised:
2023-06-15
Online:
2024-04-15
Published:
2024-05-13
Contact:
QIU Li, YAN Xiaoliang
摘要:
通过水热合成法将Mn、Sm和Ce作为助剂,掺入水滑石(LDHs)前体后经焙烧-还原分别得到Ni/Sm2O3-CeO2/Al2O3和Ni/MnO x -Sm2O3-CeO2/Al2O3催化剂,研究了两种结构催化剂的二氧化碳低温甲烷化反应。研究结果表明,相较于Ni/Sm2O3-CeO2/Al2O3,MnO x 的引入使Ni/MnO x -Sm2O3-CeO2/Al2O3在225℃以下表现出优异的性能,CO2转化率达到68%,CH4选择性达到100%,且在100h内具有良好的稳定性,150℃时TOF为0.087s-1,大于Ni/Sm2O3-CeO2/Al2O3(0.013s-1)。这主要是由于引入MnO x,在保持金属颗粒高度分散的同时,借助MnO x 在催化剂表面连续还原,提高了Ni/MnO x -Sm2O3-CeO2/Al2O3表面氧空位浓度且增加了催化剂的碱性位点,促进了二氧化碳的吸附和活化。原位红外结果进一步表明,低温下催化剂表面氧空位促进甲酸盐和甲氧基中间物种的生成,进而提高了二氧化碳甲烷化活性。
中图分类号:
郭潇东, 毛玉娇, 刘相洋, 邱丽, 于峰, 闫晓亮. Ni/Sm2O3-CeO2/Al2O3催化剂氧空位对二氧化碳低温甲烷化的影响[J]. 化工进展, 2024, 43(4): 1840-1850.
GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850.
催化剂 | H2消耗峰/℃ | |||||
---|---|---|---|---|---|---|
ε1 | ε2 | α | β1 | β2 | γ | |
NiO/Sm2O3-CeO2/Al2O3 | — | — | 356 | 468 | 560 | 632 |
NiO/MnO x -Sm2O3-CeO2/Al2O3 | 192 | 262 | 360 | 470 | 570 | 642 |
表1 NiO/Sm2O3-CeO2/Al2O3和NiO/MnO x -Sm2O3-CeO2/Al2O3催化剂还原温度
催化剂 | H2消耗峰/℃ | |||||
---|---|---|---|---|---|---|
ε1 | ε2 | α | β1 | β2 | γ | |
NiO/Sm2O3-CeO2/Al2O3 | — | — | 356 | 468 | 560 | 632 |
NiO/MnO x -Sm2O3-CeO2/Al2O3 | 192 | 262 | 360 | 470 | 570 | 642 |
催化剂 | 反应温度/℃ | 空速/h-1 | CO2转化率/% | CH4选择性/% | 参考文献 |
---|---|---|---|---|---|
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 225 | 15000 | 68 | 100 | 本工作 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 250 | 15000 | 87.8 | 100 | 本工作 |
250 | 40000 | 80.5 | 95.8 | [ | |
NiCeAl-RMO | 250 | 15000 | 78.6 | 100% | [ |
350 | 25000 | 54.5 | 100% | [ | |
300 | 3600 | 85.4 | >80% | [ | |
Ni/ZrO2-Al2O3-0.1 | 280 | 48000 | 84.4 | 99.4 | [ |
1%Ru/CeO2 | 300 | 1800 | 86 | 100 | [ |
Co-Al-O | 250 | 5000 | 74 | 99 | [ |
Ni-Mn/γ-Al2O3 | 280 | 12000 | 85 | 99 | [ |
Ni/La-Sm-Ce | 350 | 25000 | 53 | 100 | [ |
300 | 30000 | 88.6 | 99% | [ |
表2 不同催化剂在甲烷化反应中的催化性能
催化剂 | 反应温度/℃ | 空速/h-1 | CO2转化率/% | CH4选择性/% | 参考文献 |
---|---|---|---|---|---|
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 225 | 15000 | 68 | 100 | 本工作 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 250 | 15000 | 87.8 | 100 | 本工作 |
250 | 40000 | 80.5 | 95.8 | [ | |
NiCeAl-RMO | 250 | 15000 | 78.6 | 100% | [ |
350 | 25000 | 54.5 | 100% | [ | |
300 | 3600 | 85.4 | >80% | [ | |
Ni/ZrO2-Al2O3-0.1 | 280 | 48000 | 84.4 | 99.4 | [ |
1%Ru/CeO2 | 300 | 1800 | 86 | 100 | [ |
Co-Al-O | 250 | 5000 | 74 | 99 | [ |
Ni-Mn/γ-Al2O3 | 280 | 12000 | 85 | 99 | [ |
Ni/La-Sm-Ce | 350 | 25000 | 53 | 100 | [ |
300 | 30000 | 88.6 | 99% | [ |
催化剂 | 弱碱性位点 /mmol·g-1 | 中等碱性位点 /mmol·g-1 | 强碱性位点 /mmol·g-1 | 总碱度 /mmol·g-1 |
---|---|---|---|---|
Ni/Sm2O3-CeO2/Al2O3 | 0.0081 | 0.0093 | 0.013 | 0.03 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 0.013 | 0.015 | 0.021 | 0.049 |
表3 Ni/Sm2O3-CeO2/Al2O3和Ni/MnO x -Sm2O3-CeO2/Al2O3催化剂的CO2-TPD定量计算结果
催化剂 | 弱碱性位点 /mmol·g-1 | 中等碱性位点 /mmol·g-1 | 强碱性位点 /mmol·g-1 | 总碱度 /mmol·g-1 |
---|---|---|---|---|
Ni/Sm2O3-CeO2/Al2O3 | 0.0081 | 0.0093 | 0.013 | 0.03 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 0.013 | 0.015 | 0.021 | 0.049 |
1 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
LIU Changjun, GUO Qiuting, YE Jingyun, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
2 | YAN Xiaoliang, SUN Wei, FAN Liming, et al. Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation[J]. Nature Communications, 2019, 10: 2608. |
3 | 周程, 南永永, 查飞, 等. 金属有机骨架材料在二氧化碳加氢中的应用[J]. 燃料化学学报, 2021, 49(10): 1444-1457. |
ZHOU Cheng, Yongyong NAN, ZHA Fei, et al. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1444-1457. | |
4 | SAEIDI Samrand, NAJARI Sara, HESSEL Volker, et al. Recent advances in CO2 hydrogenation to value-added products—Current challenges and future directions[J]. Progress in Energy and Combustion Science, 2021, 85: 100905. |
5 | YE Runping, LI Qiaohong, GONG Weibo, et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation [J]. Applied Catalysis B: Environmental, 2020, 268: 118474. |
6 | 崔凯凯, 周桂林, 谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展, 2015, 34(3): 724-730, 737. |
CUI Kaikai, ZHOU Guilin, XIE Hongmei. Research progress in CO2 methanation catalysts[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 724-730, 737. | |
7 | WANG Qianqian, CAO Min, FAN Liming, et al. Effects of penta-coordinated Al3+ sites and Ni defective sites on Ni/Al2O3 for CO methanation[J]. AIChE Journal, 2023, 69(5): e17998. |
8 | YAN Xiaoliang, YUAN Chen, BAO Jiehua, et al. A Ni-based catalyst with enhanced Ni-support interaction for highly efficient CO methanation[J]. Catalysis Science & Technology, 2018, 8(14): 3474-3483. |
9 | HAN Rui, XING Shuang, WANG Yang, et al. Two birds with one stone: MgO promoted Ni-CaO as stable and coke-resistant bifunctional materials for integrated CO2 capture and conversion[J]. Separation and Purification Technology, 2023, 307: 122808. |
10 | MA Xiaotong, LI Yingjie, SHI Lei, et al. Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process[J]. Applied Energy, 2016, 168: 85-95. |
11 | AHMAD Waqar, YOUNIS Muhammad Naeem, SHAWABKEH Reyad, et al. Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure[J]. Catalysis Communications, 2017, 100: 121-126. |
12 | BRANCO Joaquim B, BRITO Pedro E, FERREIRA Ana C. Methanation of CO2 over nickel-lanthanide bimetallic oxides supported on silica[J]. Chemical Engineering Journal, 2020, 380: 122465. |
13 | ZHANG Qinwei, XU Ruinian, LIU Ning, et al. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low-temperature performance for CO2 methanation[J]. Applied Surface Science, 2022, 579: 152204. |
14 | ZHU Minghui, TIAN Pengfei, CAO Xinyu, et al. Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation[J]. Applied Catalysis B: Environmental, 2021, 282: 119561. |
15 | LI Shuangshuang, LIU Guilong, ZHANG Siran, et al. Cerium-modified Ni-La2O3/ZrO2 for CO2 methanation[J]. Journal of Energy Chemistry, 2020, 43: 155-164. |
16 | POLYCHRONOPOULOU K, ZEDAN AF, KATSIOTIS M S, et al. Rapid microwave assisted sol-gel synthesis of CeO2 and Ce x Sm1- x O2 nanoparticle catalysts for CO oxidation[J]. Molecular Catalysis, 2017, 428: 41-55. |
17 | SIAKAVELAS G I, CHARISIOU N D, ALKHOORI S, et al. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction[J]. Applied Catalysis B: Environmental, 2021, 282: 119562. |
18 | 田郡博, 古芳娜, 苏发兵, 等. 二氧化碳甲烷化催化剂及反应机理研究进展[J]. 过程工程学报, 2023, 23(3): 375-395. |
TIAN Junbo, GU Fangna, SU Fabing, et al. CO2 methanation: Recent advances in catalyst development and reaction mechanistic study[J]. The Chinese Journal of Process Engineering, 2023, 23(3): 375-395. | |
19 | KRCHA Matthew D, MAYERNICK Adam D, JANIK Michael J. Periodic trends of oxygen vacancy formation and C—H bond activation over transition metal-doped CeO2 (111) surfaces[J]. Journal of Catalysis, 2012, 293: 103-115. |
20 | JIANG Yuexiu, HUANG Tongxia, DONG Lihui, et al. Mn modified Ni/bsentonite for CO2 methanation[J]. Catalysts, 2018, 8(12): 646. |
21 | WANG Binxia, ZHANG Xinyue, LIU Yanan, et al. Basic intensity regulation of layered double oxide for CO2 adsorption process at medium temperature in coal gasification[J]. Chemical Engineering Journal, 2022, 446: 136842. |
22 | LIN Shuangxi, LI Zhenhua, LI Maoshuai. Tailoring metal-support interactions via tuning CeO2 particle size for enhancing CO2 methanation activity over Ni/CeO2 catalysts[J]. Fuel, 2023, 333: 126369. |
23 | XU Qian, HU Shanwei, WANG Weijia, et al. Temperature-induced structural evolution of Sm nanoparticles on Al2O3 thin film: An in situ investigation using SRPES, XPS and STM[J]. Applied Surface Science, 2018, 432: 115-120. |
24 | HU Feiyang, JIN Chengkai, WU Rundong, et al. Enhancement of hollow Ni/CeO2-Co3O4 for CO2 methanation: From CO2 adsorption and activation by synergistic effects[J]. Chemical Engineering Journal, 2023, 461: 142108. |
25 | ZHANG Min, LI Weiman, WU Xiaofeng, et al. Low-temperature catalytic oxidation of benzene over nanocrystalline Cu-Mn composite oxides by facile sol-gel synthesis[J]. New Journal of Chemistry, 2020, 44(6): 2442-2451. |
26 | 马源, 肖晴月, 岳君容, 等. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
MA Yuan, XIAO Qingyue, YUE Junrong, et al. CO x co-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. | |
27 | LIN Xueting, LI Shujun, HE Hui, et al. Evolution of oxygen vacancies in MnO x -CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 91-102. |
28 | GONZÁLEZ-CASTAÑO M, GONZÁLEZ-ARIAS J, BOBADILLA L F, et al. In-situ DRIFTS steady-state study of CO2 and CO methanation over Ni-promoted catalysts[J]. Fuel, 2023, 338: 127241. |
29 | FU Hao, SUN Shaohui, LIAN Honglei. Enhanced low-temperature CO2 methanation over Ni/ZrO2-Al2O3 catalyst: Effect of Al addition on catalytic performance and reaction mechanism[J]. Journal of CO2 Utilization, 2023, 69: 102415. |
30 | WANG Chunfen, SUN Hongman, LIU Xiaoqi, et al. Low-temperature CO2 methanation over Ru/CeO2: Investigation into Ru loadings[J]. Fuel, 2023, 345: 128238. |
31 | LIU Zhihao, GAO Xinhua, LIU Bo, et al. Highly stable and selective layered Co-Al-O catalysts for low-temperature CO2 methanation[J]. Applied Catalysis B: Environmental, 2022, 310: 121303. |
32 | QIN Daxin, XIE Dengbing, ZHENG Heping, et al. In-situ FTIR study of CO2 adsorption and methanation mechanism over bimetallic catalyst at low temperature[J]. Catalysis Letters, 2021, 151: 2894-2905. |
33 | SIAKAVELAS G I, CHARISIOU N D, ALKHOORI A, et al. Highly selective and stable Ni/La-M (M=Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation[J]. Journal of CO2 Utilization, 2021, 51: 101618. |
34 | ZHANG Tengfei, WANG Weiwei, GU Fangna, et al. Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance[J]. Applied Catalysis B: Environmental, 2022, 312: 121385. |
35 | 张嘉琪, 林丽娜, 高文桂, 等. CeO2的形貌对CuO/CeO2催化剂CO2加氢制甲醇性能的影响[J]. 化工进展, 2022, 41(8): 4213-4223. |
ZHANG Jiaqi, LIN Lina, GAO Wengui, et al. Effect of CeO2 morphology on the performance of CuO/CeO2 catalyst for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4213-4223. | |
36 | MONICA S E S, DHAS C R, VENKATESH R,et al. Nebulizer sprayed nickel-manganese (Ni-Mn) mixed metal oxide nanocomposite coatings for high-performance electrochromic device applications[J]. Journal of Solid State Electrochemistry, 2022, 26(5): 1271-1290. |
37 | 王国栋, 郭亚飞, 李佳媛, 等. 碱/碱土金属修饰Ni基催化剂的CO2吸附与甲烷化性能[J]. 化工进展, 2021, 40(12): 6925-6933. |
WANG Guodong, GUO Yafei, LI Jiayuan, et al. CO2 adsorption and methanation performance of nickel-based catalysts modified with alkali/alkaline-earth metals[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6925-6933. | |
38 | DROUILLY Charlotte, KRAFFT Jean-Marc, AVERSENG Frédéric, et al. Role of oxygen vacancies in the basicity of ZnO: From the model methylbutynol conversion to the ethanol transformation application[J]. Applied Catalysis A: General, 2013, 453: 121-129. |
39 | WANG Xiang, SHI Hui, KWAK Ja Hun, et al. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient DRIFTS-MS studies[J]. ACS Catalysis, 2015, 5(11): 6337-6349. |
40 | SCHREITER Norman, KIRCHNER Johann, KURETI Sven. A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst[J]. Catalysis Communications, 2020, 140: 105988. |
41 | FATAH N A A, JALIL A A, SALLEH N F M, et al. Elucidation of cobalt disturbance on Ni/Al2O3 in dissociating hydrogen towards improved CO2 methanation and optimization by response surface methodology (RSM)[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18562-18573. |
42 | CÁRDENAS-ARENAS A, QUINDIMIL A, DAVÓ-QUIÑONERO A, et al. Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2020, 265: 118538. |
43 | JIA Xinyu, ZHANG Xiaoshan, RUI Ning, et al. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Applied Catalysis B: Environmental, 2019, 244: 159-169. |
[1] | 王彦红, 蒋雷, 薛帅, 李洪伟, 贾玉婷. 预冷通道中超临界甲烷换热特性分析[J]. 化工进展, 2024, 43(4): 1690-1699. |
[2] | 刘若璐, 汤海波, 何翡翡, 罗凤盈, 王金鸽, 杨娜, 李洪伟, 张锐明. 液态有机储氢技术研究现状与展望[J]. 化工进展, 2024, 43(4): 1731-1741. |
[3] | 王红妍, 马子然, 李歌, 马静, 赵春林, 周佳丽, 王磊, 彭胜攀. 燃煤耦合可再生燃料烟气多污染物协同催化脱除研究进展[J]. 化工进展, 2024, 43(4): 1783-1795. |
[4] | 陈家一, 高帷韬, 阴亚楠, 王诚, 欧阳鸿武, 毛宗强. 电化学沉积法制备质子交换膜燃料电池催化剂[J]. 化工进展, 2024, 43(4): 1796-1809. |
[5] | 吴晨赫, 刘彧旻, 杨昕旻, 崔记伟, 姜韶堃, 叶金花, 刘乐全. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. |
[6] | 刘雨蓉, 王兴宝, 李文英. 分子筛负载Pt催化剂酸性位点调控及对蒽深度加氢性能的影响[J]. 化工进展, 2024, 43(4): 1832-1839. |
[7] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
[8] | 刘方旺, 韩艺, 张佳佳, 步红红, 王兴鹏, 于传峰, 刘猛帅. CO2与环氧化物耦合制备环状碳酸酯的多相催化体系研究进展[J]. 化工进展, 2024, 43(3): 1252-1265. |
[9] | 张鹏飞, 严张艳, 任亮, 张奎, 梁家林, 赵广乐, 张璠玢, 胡志海. C |
[10] | 谷星朋, 马红钦, 刘嘉豪. 雷尼镍的磷量子点改性及其催化加氢脱硫性能[J]. 化工进展, 2024, 43(3): 1293-1301. |
[11] | 张书铭, 刘化章. 基于BP神经网络模型优化Fe1-x O基氨合成催化剂[J]. 化工进展, 2024, 43(3): 1302-1308. |
[12] | 陈风, 王宣德, 黄伟, 王晓东, 王琰. HZSM-22的粒径调控及Pt/HZSM-22的正十二烷加氢异构催化性能[J]. 化工进展, 2024, 43(3): 1309-1317. |
[13] | 萧垚鑫, 张军, 单锐, 袁浩然, 陈勇. Pt/CaO材料催化糠醇加氢制备戊二醇[J]. 化工进展, 2024, 43(3): 1318-1327. |
[14] | 李伟杰, 康金灿, 张传明, 林丽娜, 李昌鑫, 朱红平. 锆改性Cu/SiO2催化剂催化3-羟基丙酸甲酯选择性加氢[J]. 化工进展, 2024, 43(3): 1328-1341. |
[15] | 李开瑞, 高照华, 刘甜甜, 李静, 魏海生. 还原温度调变Rh/FePO4催化剂喹啉选择加氢性能[J]. 化工进展, 2024, 43(3): 1342-1349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |