1 |
邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机, 2021, 47(4): 8-21.
|
|
ZOU Zhengping, WANG Yifan, Qitai ERI, et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine, 2021, 47(4): 8-21.
|
2 |
邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报, 2015, 36(8): 2544-2562.
|
|
ZOU Zhengping, LIU Huoxing, TANG Hailong, et al. Precooling technology study of hypersonic aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2544-2562.
|
3 |
薛亮波, 孙波, 卓长飞, 等. 预冷对发动机进气道流动特性影响的数值模拟研究[J]. 推进技术, 2020, 41(6): 1227-1236.
|
|
XUE Liangbo, SUN Bo, ZHUO Changfei, et al. Numerical simulation study of effects of precooling on flow characteristics of engine inlets[J]. Journal of Propulsion Technology, 2020, 41(6): 1227-1236.
|
4 |
罗佳茂, 杨顺华, 张建强, 等. 换热预冷发动机预冷特性和发动机性能数值研究[J]. 航空学报, 2019, 40(5): 106-118.
|
|
LUO Jiamao, YANG Shunhua, ZHANG Jianqiang, et al. Numerical investigation of pre-cooling characteristics of heat exchange pre-cooling engine and engine performance[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 106-118.
|
5 |
CHEN Yiming, ZOU Zhengping, LIU Huoxing, et al. Verification at Mach 4 heat conditions of an annular microtube-typed precooler for hypersonic precooled engines[J]. Applied Thermal Engineering, 2022, 201: 117742.
|
6 |
WEBBER Helen, FEAST Simon, BOND Alan. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society, 2009, 62: 122-130.
|
7 |
高远, 陈玉春, 史新兴. SABRE预冷器计算模型及其在整机模型中的应用[J]. 推进技术, 2021, 42(11): 2485-2493.
|
|
GAO Yuan, CHEN Yuchun, SHI Xinxing. SABRE precooler calculation model and its application in engine model[J]. Journal of Propulsion Technology, 2021, 42(11): 2485-2493.
|
8 |
LI Nan, ZHAO Yun, WANG Hao, et al. Thermal and hydraulic performance of a compact precooler with mini-tube bundles for aero-engine[J]. Applied Thermal Engineering, 2022, 200: 117656.
|
9 |
魏鑫, 金峰, 刘天依, 等. SABRE空气预冷器流动与换热数值研究[J]. 火箭推进, 2019, 45(5): 8-16.
|
|
WEI Xin, JIN Feng, LIU Tianyi, et al. Numerical study on flow and heat transfer of air precooler in SABRE[J]. Journal of Rocket Propulsion, 2019, 45(5): 8-16.
|
10 |
李帅, 马同玲, 刘洪涛, 等. SABRE预冷器结构参数对其性能影响的数值分析[J]. 推进技术, 2022, 43(4): 257-264.
|
|
LI Shuai, MA Tongling, LIU Hongtao, et al. Numerical analysis of effects of pre-cooler structure parameter on its performance in SABRE[J]. Journal of Propulsion Technology, 2022, 43(4): 257-264.
|
11 |
李晨沛, 王跃社, 王海军, 等. 复合发动机预冷器换热特性研究[J]. 工程热物理学报, 2017, 38(4): 811-816.
|
|
LI Chenpei, WANG Yueshe, WANG Haijun, et al. Numerical analysis of heat transfer in precooler for hybrid airbreathing rocket engines[J]. Journal of Engineering Thermophysics, 2017, 38(4): 811-816.
|
12 |
刘银龙, 徐国强, 付衍琛, 等. 高超声速发动机碳氢燃料预冷器换热特性[J]. 空气动力学学报, 2022, 40(1): 208-217.
|
|
LIU Yinlong, XU Guoqiang, FU Yanchen, et al. Heat transfer characteristics of a hydrocarbon fuel precooler for hypersonic engines[J]. Acta Aerodynamica Sinica, 2022, 40(1): 208-217.
|
13 |
MANDAL Tushar Kanti, NGUYEN Vinh Phu, WU Jianying. Comparative study of phase-field damage models for hydrogen assisted cracking[J]. Theoretical and Applied Fracture Mechanics, 2021, 111: 102840.
|
14 |
ZHANG Junqiang, ZOU Zhengping, WANG Yifan. Large-eddy simulation on the aerodynamic and thermal characteristics in a micropipe of the hypersonic engine precooler[J]. Micromachines, 2022, 13(4): 637.
|
15 |
罗佳茂, 杨顺华, 张建强, 等. 甲烷预冷器性能及与压气机参数匹配研究[J]. 推进技术, 2022, 43(5): 64-73.
|
|
LUO Jiamao, YANG Shunhua, ZHANG Jianqiang, et al. Performance of methane pre-cooler and matching characteristics with compressor[J]. Journal of Propulsion Technology, 2022, 43(5): 64-73.
|
16 |
陈尊敬, 王雷雷, 孟华. 考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J]. 航空学报, 2013, 34(1): 8-18.
|
|
CHEN Zunjing, WANG Leilei, MENG Hua. Study of heat transfer of cryogenic methane under supercritical pressure with consideration of thermal conduction in engine cooling channel walls[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 8-18.
|
17 |
WANG Yanhong, LU Yingnan, LI Sufen, et al. Numerical study on non-uniform heat transfer deterioration of supercritical RP-3 aviation kerosene in a horizontal tube[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1542-1557.
|
18 |
URBANO Annafederica, NASUTI Francesco. Onset of heat transfer deterioration in supercritical methane flow channels[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(2): 298-308.
|
19 |
GU Hongfang, LI Hongzhi, WANG Haijun, et al. Experimental investigation on convective heat transfer from a horizontal miniature tube to methane at supercritical pressures[J]. Applied Thermal Engineering, 2013, 58(1/2): 490-498.
|
20 |
王彦红, 李雨健, 李洪伟, 等. S型通道内超临界RP-3航空煤油换热特性研究[J]. 工程热物理学报, 2022, 43(9): 2442-2450.
|
|
WANG Yanhong, LI Yujian, LI Hongwei, et al. Research on heat transfer characteristics of supercritical RP-3 aviation kerosene in a S-shaped channel[J]. Journal of Engineering Thermophysics, 2022, 43(9): 2442-2450.
|
21 |
HIEJIMA Toshihiko. Criterion for vortex breakdown on shock wave and streamwise vortex interactions[J]. Physical Review E, 2014, 89(5): 053017.
|
22 |
KOCK Fabian, HERWIG Heinz. Entropy production calculation for turbulent shear flows and their implementation in CFD codes[J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 672-680.
|
23 |
WANG Kaizheng, XU Xiaoxiao, WU Yangyang, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120.
|
24 |
KIM Dong Eok, KIM Moo Hwan. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349.
|
25 |
LIU Shenghui, HUANG Yanping, LIU Guangxu, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156.
|