1 |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345.
|
2 |
TAHAN LATIBARI Sara, SADRAMELI Seyed Mojtaba. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review[J]. Solar Energy, 2018, 170: 1130-1161.
|
3 |
DA CUNHA Sandra Raquel Leite, DE AGUIAR José Luís Barroso. Phase change materials and energy efficiency of buildings: A review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083.
|
4 |
MOFIJUR M, MAHLIA T, SILITONGA A, et al. Phase change materials (PCM) for solar energy usages and storage: An overview[J]. Energies, 2019, 12(16): 1-20
|
5 |
MERLIN Kevin, SOTO Jérôme, DELAUNAY Didier, et al. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage[J]. Applied Energy, 2016, 183: 491-503.
|
6 |
SHEN Zuguo, CHEN Shuai, LIU Xun, et al. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111301.
|
7 |
WANG Changhong, LIN Tao, LI Na, et al. Heat transfer enhancement of phase change composite material: Copper foam/paraffin[J]. Renewable Energy, 2016, 96: 960-965.
|
8 |
陈亮, 刘道平, 杨亮. 相变储能过程传热强化技术研究进展[J]. 化工进展, 2017, 36(S1): 291-296.
|
|
CHEN Liang, LIU Daoping, YANG Liang. Research progress of heat transfer enhancement technology in phase change energy storage process[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 291-296.
|
9 |
TARIQ Syeda Laraib, Hafiz Muhammad ALI, AKRAM Muhammad Ammar, et al. Nanoparticles enhanced phase change materials (NePCMs)-A recent review[J]. Applied Thermal Engineering, 2020, 176: 115305.
|
10 |
ABDULLAH A S, ESSA F A, BACHA Habib BEN, et al. Improving the trays solar still performance using reflectors and phase change material with nanoparticles[J]. Journal of Energy Storage, 2020, 31: 101744.
|
11 |
GHALAMBAZ Mohammad, DOOSTANI Ali, CHAMKHA Ali J, et al. Melting of nanoparticles-enhanced phase-change materials in an enclosure: Effect of hybrid nanoparticles[J]. International Journal of Mechanical Sciences, 2017, 134: 85-97.
|
12 |
Ömer AKBAL, SELIMEFENDIGIL Fatih, ÖZTOP Hakan F. Effects of flexible fins on melting process in a phase change material filled circular cavity[J]. Journal of Energy Storage, 2022, 55: 105533.
|
13 |
CHEN Zhifeng, LI Xiangsheng, ZHANG Jilong, et al. Simulation and analysis of heat dissipation performance of power battery based on phase change material enhanced heat transfer variable fin structure[J]. Numerical Heat Transfer A: Applications, 2021, 80(11): 535-555.
|
14 |
ZHANG Shengqi, PU Liang, XU Lingling, et al. Melting performance analysis of phase change materials in different finned thermal energy storage[J]. Applied Thermal Engineering, 2020, 176: 115425.
|
15 |
朱孟帅, 王子龙, 孙向昕, 等. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211.
|
|
ZHU Mengshuai, WANG Zilong, SUN Xiangxin, et al. Experimental research on effect of copper metal foam proportion on paraffin wax melting and heat transfer mechanism under high cell density[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3203-3211.
|
16 |
ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: A review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919.
|
17 |
SHAKIBI Hamid, AFZAL Sadegh, SHOKRI Afshar, et al. Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells[J]. Journal of Energy Storage, 2022, 51: 104466.
|
18 |
WANG Tingyu, WANG Shuangfeng, LUO R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119.
|
19 |
TRIVEDI G V N, PARAMESHWARAN R. Cryogenic conditioning of microencapsulated phase change material for thermal energy storage[J]. Scientific Reports, 2020, 10: 18353.
|
20 |
ALVA Guruprasad, LIN Yaxue, LIU Lingkun, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294.
|
21 |
TAUSEEF-UR-REHMAN, Hafiz Muhammad ALI, JANJUA Muhammad Mansoor, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673.
|
22 |
ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412.
|
23 |
TIAN Y, ZHAO C Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J]. Energy, 2011, 36(9): 5539-5546.
|
24 |
TAO Y, YOU Y, HE Y. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485.
|
25 |
ZHU Feng, ZHANG Chuan, GONG Xiaolu. Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity [J]. Applied Thermal Engineering, 2017, 123: 256-265.
|
26 |
YANG Xiaohu, WEI Pan, LIU Gang, et al. Performance evaluation on the gradient design of pore parameters for metal foam and pin fin-metal foam hybrid structure [J]. Applied Thermal Engineering, 2020, 175: 115416.
|
27 |
GHAHREMANNEZHAD A, XU H J, SALIMPOUR M, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams [J]. Applied Thermal Engineering, 2020, 179: 115731.
|
28 |
LI Hongyang, HU Chengzhi, HE Yichuan, et al. Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities[J]. Energy, 2021, 237: 121540.
|
29 |
GUO Zengxu, BAI Qingsong, HOU Jialin, et al. Experimental investigation on the melting behavior of phase change materials in open-cell metal foams in an inclined rectangular enclosure[J]. Energy Procedia, 2018, 152: 215-220.
|
30 |
YANG Xiaohu, WANG Xinyi, LIU Zhan, et al. Influence of aspect ratios for a tilted cavity on the melting heat transfer of phase change materials embedded in metal foam[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105127.
|
31 |
XU Yang, REN Qinlong, ZHENG Zhangjing, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95.
|
32 |
WANG Gang, WEI Gaosheng, XU Chao, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J]. Applied Thermal Engineering, 2019, 147: 464-472.
|
33 |
刘广正. 含梯度多孔骨架相变材料的传热特性研究[D]. 济南: 山东建筑大学, 2021.
|
|
LIU Guangzheng. Study on heat transfer characteristics of phase change materials with gradient porous skeleton[D].Jinan: Shandong Jianzhu University, 2021.
|
34 |
KAMKARI Babak, AMLASHI Hamid Jahedi. Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures[J]. International Communications in Heat and Mass Transfer, 2017, 88: 211-219.
|
35 |
ZHOU Zhijie, HU Zhuohuan, WANG Dan, et al. Visualized-experimental investigation on the melting performance of PCM in 3D printed metal foam [J]. Thermal Science and Engineering Progress, 2022, 31: 101298
|