化工进展 ›› 2024, Vol. 43 ›› Issue (2): 649-658.DOI: 10.16085/j.issn.1000-6613.2023-1285
收稿日期:
2023-07-25
修回日期:
2023-10-23
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
陈宝明
作者简介:
见禹(1998—),男,硕士研究生,研究方向多孔介质相变传热。E-mail:jy_9875@163.com。
基金资助:
JIAN Yu1(), CHEN Baoming1(
), GONG Hanyu2
Received:
2023-07-25
Revised:
2023-10-23
Online:
2024-02-25
Published:
2024-03-07
Contact:
CHEN Baoming
摘要:
添加金属骨架的多孔介质复合相变材料可以改善纯相变材料的低导热性能,进一步提高复合相变材料的传热速率,具有重要研究意义。本研究采用数值模拟,提出构建主干-分支两级分级结构金属骨架并与石蜡方腔相结合,形成传热效果更好的复合相变传热材料,并在此基础上添加翅片管结构来进一步优化复合相变材料的传热性能。结果表明,翅片管结构对相变传热过程影响显著,在横向主干附近产生的流速突进现象可使熔化前沿更加倾斜,腔内环状流动传热快速向方腔下部移动。优化后的复合相变材料相较于均匀骨架复合相变材料固液相变时间可缩短37.4%,熔化初期瞬时液化速率曲线的波谷提高了1.88倍并且使熔化后期800s时的最大温差减小了20.9%,提高了温度均匀性。本研究在定孔隙率情况下对骨架结构进行了改变,通过更合理的金属骨架体积分布提高了复合相变材料的储热速率。
中图分类号:
见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658.
JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658.
物性参数 | 值 |
---|---|
固体(液体)比热容/kJ·kg-1·K-1 | 1.78(2.135) |
相变起始(终止)温度/℃ | 35(45) |
熔化潜热/kJ·kg-1 | 113 |
热导率固(液)/W·m-1·K-1 | 0.278(0.117) |
密度固(液)/kg· | 900(780) |
表1 石蜡物性参数
物性参数 | 值 |
---|---|
固体(液体)比热容/kJ·kg-1·K-1 | 1.78(2.135) |
相变起始(终止)温度/℃ | 35(45) |
熔化潜热/kJ·kg-1 | 113 |
热导率固(液)/W·m-1·K-1 | 0.278(0.117) |
密度固(液)/kg· | 900(780) |
物性参数 | 值 |
---|---|
热导率/W·m-1·K-1 | 121 |
密度/kg·m-3 | 2700 |
比热容/J·kg-1·K-1 | 900 |
表2 骨架物性参数
物性参数 | 值 |
---|---|
热导率/W·m-1·K-1 | 121 |
密度/kg·m-3 | 2700 |
比热容/J·kg-1·K-1 | 900 |
1 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
2 | TAHAN LATIBARI Sara, SADRAMELI Seyed Mojtaba. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review[J]. Solar Energy, 2018, 170: 1130-1161. |
3 | DA CUNHA Sandra Raquel Leite, DE AGUIAR José Luís Barroso. Phase change materials and energy efficiency of buildings: A review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. |
4 | MOFIJUR M, MAHLIA T, SILITONGA A, et al. Phase change materials (PCM) for solar energy usages and storage: An overview[J]. Energies, 2019, 12(16): 1-20 |
5 | MERLIN Kevin, SOTO Jérôme, DELAUNAY Didier, et al. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage[J]. Applied Energy, 2016, 183: 491-503. |
6 | SHEN Zuguo, CHEN Shuai, LIU Xun, et al. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111301. |
7 | WANG Changhong, LIN Tao, LI Na, et al. Heat transfer enhancement of phase change composite material: Copper foam/paraffin[J]. Renewable Energy, 2016, 96: 960-965. |
8 | 陈亮, 刘道平, 杨亮. 相变储能过程传热强化技术研究进展[J]. 化工进展, 2017, 36(S1): 291-296. |
CHEN Liang, LIU Daoping, YANG Liang. Research progress of heat transfer enhancement technology in phase change energy storage process[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 291-296. | |
9 | TARIQ Syeda Laraib, Hafiz Muhammad ALI, AKRAM Muhammad Ammar, et al. Nanoparticles enhanced phase change materials (NePCMs)-A recent review[J]. Applied Thermal Engineering, 2020, 176: 115305. |
10 | ABDULLAH A S, ESSA F A, BACHA Habib BEN, et al. Improving the trays solar still performance using reflectors and phase change material with nanoparticles[J]. Journal of Energy Storage, 2020, 31: 101744. |
11 | GHALAMBAZ Mohammad, DOOSTANI Ali, CHAMKHA Ali J, et al. Melting of nanoparticles-enhanced phase-change materials in an enclosure: Effect of hybrid nanoparticles[J]. International Journal of Mechanical Sciences, 2017, 134: 85-97. |
12 | Ömer AKBAL, SELIMEFENDIGIL Fatih, ÖZTOP Hakan F. Effects of flexible fins on melting process in a phase change material filled circular cavity[J]. Journal of Energy Storage, 2022, 55: 105533. |
13 | CHEN Zhifeng, LI Xiangsheng, ZHANG Jilong, et al. Simulation and analysis of heat dissipation performance of power battery based on phase change material enhanced heat transfer variable fin structure[J]. Numerical Heat Transfer A: Applications, 2021, 80(11): 535-555. |
14 | ZHANG Shengqi, PU Liang, XU Lingling, et al. Melting performance analysis of phase change materials in different finned thermal energy storage[J]. Applied Thermal Engineering, 2020, 176: 115425. |
15 | 朱孟帅, 王子龙, 孙向昕, 等. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211. |
ZHU Mengshuai, WANG Zilong, SUN Xiangxin, et al. Experimental research on effect of copper metal foam proportion on paraffin wax melting and heat transfer mechanism under high cell density[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3203-3211. | |
16 | ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: A review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919. |
17 | SHAKIBI Hamid, AFZAL Sadegh, SHOKRI Afshar, et al. Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells[J]. Journal of Energy Storage, 2022, 51: 104466. |
18 | WANG Tingyu, WANG Shuangfeng, LUO R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119. |
19 | TRIVEDI G V N, PARAMESHWARAN R. Cryogenic conditioning of microencapsulated phase change material for thermal energy storage[J]. Scientific Reports, 2020, 10: 18353. |
20 | ALVA Guruprasad, LIN Yaxue, LIU Lingkun, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294. |
21 | TAUSEEF-UR-REHMAN, Hafiz Muhammad ALI, JANJUA Muhammad Mansoor, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
22 | ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412. |
23 | TIAN Y, ZHAO C Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J]. Energy, 2011, 36(9): 5539-5546. |
24 | TAO Y, YOU Y, HE Y. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485. |
25 | ZHU Feng, ZHANG Chuan, GONG Xiaolu. Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity [J]. Applied Thermal Engineering, 2017, 123: 256-265. |
26 | YANG Xiaohu, WEI Pan, LIU Gang, et al. Performance evaluation on the gradient design of pore parameters for metal foam and pin fin-metal foam hybrid structure [J]. Applied Thermal Engineering, 2020, 175: 115416. |
27 | GHAHREMANNEZHAD A, XU H J, SALIMPOUR M, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams [J]. Applied Thermal Engineering, 2020, 179: 115731. |
28 | LI Hongyang, HU Chengzhi, HE Yichuan, et al. Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities[J]. Energy, 2021, 237: 121540. |
29 | GUO Zengxu, BAI Qingsong, HOU Jialin, et al. Experimental investigation on the melting behavior of phase change materials in open-cell metal foams in an inclined rectangular enclosure[J]. Energy Procedia, 2018, 152: 215-220. |
30 | YANG Xiaohu, WANG Xinyi, LIU Zhan, et al. Influence of aspect ratios for a tilted cavity on the melting heat transfer of phase change materials embedded in metal foam[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105127. |
31 | XU Yang, REN Qinlong, ZHENG Zhangjing, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. |
32 | WANG Gang, WEI Gaosheng, XU Chao, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J]. Applied Thermal Engineering, 2019, 147: 464-472. |
33 | 刘广正. 含梯度多孔骨架相变材料的传热特性研究[D]. 济南: 山东建筑大学, 2021. |
LIU Guangzheng. Study on heat transfer characteristics of phase change materials with gradient porous skeleton[D].Jinan: Shandong Jianzhu University, 2021. | |
34 | KAMKARI Babak, AMLASHI Hamid Jahedi. Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures[J]. International Communications in Heat and Mass Transfer, 2017, 88: 211-219. |
35 | ZHOU Zhijie, HU Zhuohuan, WANG Dan, et al. Visualized-experimental investigation on the melting performance of PCM in 3D printed metal foam [J]. Thermal Science and Engineering Progress, 2022, 31: 101298 |
[1] | 郭迎春, 梁晓怿. 柠檬酸改性球形活性炭对氨气吸附性能的影响[J]. 化工进展, 2024, 43(2): 1082-1088. |
[2] | 李京, 方庆, 周文浩, 吴国良, 王家辉, 张华, 倪红卫. 挡板构型对含钒页岩浸出槽内多相流行为的影响[J]. 化工进展, 2024, 43(2): 619-627. |
[3] | 代洪静, 马学虎, 王四芳. 低中放射性废水处理吸附技术及材料[J]. 化工进展, 2024, 43(1): 529-540. |
[4] | 孙月, 王斯佳, 吴明侠, 宋先雨, 徐首红. pH/温度响应型聚合物PMAA-b-PDMAEMA的合成、性能调控及应用[J]. 化工进展, 2024, 43(1): 480-489. |
[5] | 封德彬, 王文, 马凡华. 掺氢天然气的管道输运特性仿真与分析[J]. 化工进展, 2024, 43(1): 390-399. |
[6] | 袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48. |
[7] | 孙崇正, 李玉星, 许洁, 韩辉, 宋光春, 卢晓. 浮式氢能储运过程中FLH2通道管外降膜流动的海上适应性强化机理[J]. 化工进展, 2024, 43(1): 338-352. |
[8] | 谢广烁, 张斯亮, 何松, 肖娟, 王斯民. 基于最佳预后元模型的颗粒污垢特性全局敏感性分析[J]. 化工进展, 2024, 43(1): 328-337. |
[9] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[10] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[11] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[12] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[13] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[14] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[15] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |