化工进展 ›› 2024, Vol. 43 ›› Issue (2): 937-947.DOI: 10.16085/j.issn.1000-6613.2023-0281
收稿日期:
2023-02-28
修回日期:
2023-05-22
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
朱兵国
作者简介:
朱兵国(1988—),男,博士,讲师,研究方向为超临界流体传热传质。E-mail:zhubg@lut.edu.cn。
基金资助:
ZHU Bingguo(), GONG Kaigang, PENG Bin
Received:
2023-02-28
Revised:
2023-05-22
Online:
2024-02-25
Published:
2024-03-07
Contact:
ZHU Bingguo
摘要:
利用已有的流动传热实验数据,对不同湍流模型预测超临界CO2(S-CO2)传热能力进行了评价及选取,确定了SST k-ω 湍流模型为最优模型。分析了入口温度、热流密度、质量流速、浮升力和流动加速效应对内径为10mm的垂直加热管内S-CO2的对流传热特性的影响。结果表明:在一些工况条件下Bu<10-5、Bu*<5.6×10-7和Kv<3×10-6并不满足,表明浮升力和流动加速度效应并不能解释高质量流速下的数值模拟结果。基于超临界类沸腾理论,建立了垂直加热管内S-CO2类沸腾传热模型,并阐述了S-CO2传热恶化现象,径向方向上S-CO2热物性和湍流的详细分布表明超临界传热受类气膜的厚度、类气膜的热性质和近壁区湍流动能的影响很大,成功解释了S-CO2在高质量流速下的传热机理。最后引入超临界沸腾数SBO,提出了适用高质量流速的传热关联式。
中图分类号:
朱兵国, 巩楷刚, 彭斌. 垂直管内高质量流速超临界CO2换热特性[J]. 化工进展, 2024, 43(2): 937-947.
ZHU Bingguo, GONG Kaigang, PENG Bin. Heat transfer characteristics of supercritical CO2 with high mass flux in vertical tube[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 937-947.
文献 | 公式 |
---|---|
Winterton等[ | |
Kim等[ | |
Gupta等[ | |
Kim等[ | |
Mokry等[ |
表1 超临界传热关联式
文献 | 公式 |
---|---|
Winterton等[ | |
Kim等[ | |
Gupta等[ | |
Kim等[ | |
Mokry等[ |
1 | XU Jinliang, LIU Chao, SUN Enhui, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831. |
2 | 师亚东, 李靓. 国际能源企业低碳化转型实践研究[J]. 中国能源, 2021, 43(3): 75-79. |
SHI Yadong, LI Liang. Study on the practice of low-carbon transformation of international energy enterprises[J]. Energy of China, 2021, 43(3): 75-79. | |
3 | 王哮江, 刘鹏, 李荣春, 等. “双碳”目标下先进发电技术研究进展及展望[J]. 热力发电, 2022, 51(1): 52-59. |
WANG Xiaojiang, LIU Peng, LI Rongchun, et al. Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality[J]. Thermal Power Generation, 2022, 51(1): 52-59. | |
4 | 张珍珍, 吕清泉, 张健美. “双碳”目标下分布式光伏发电技术的研究进展及展望[J]. 太阳能, 2023(1): 17-21. |
ZHANG Zhenzhen, Qingquan LYU, ZHANG Jianmei. Research progress and prospect of distributed pv power generation technology under the goal of emission peak and carbon neutrality[J]. Solar Energy, 2023(1): 17-21. | |
5 | 徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10. |
XU Jinliang, LIU Chao, SUN Enhui, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10. | |
6 | JIANG Peixue, ZHANG Yu, ZHAO Chenru, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637. |
7 | JIANG Peixue, ZHANG Yu, SHI Runfu. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056. |
8 | 刘生晖, 黄彦平, 刘光旭, 等. 竖直圆管内超临界二氧化碳强迫对流传热实验研究[J]. 核动力工程, 2017, 38(1): 1-5. |
LIU Shenghui, HUANG Yanping, LIU Guangxu, et al. Investigation of correlation for forced convective heat transfer to supercritical carbon dioxide flowing in a vertical tube[J]. Nuclear Power Engineering, 2017, 38(1): 1-5. | |
9 | Oğuzhan GÖKKAYA, Efe ÖZTABAK, Hojin AHN. Experimental investigation on heat transfer characteristics of supercritical CO2 flowing upward and downward through a microtube at low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2022, 139: 110717. |
10 | GUO Jiangfeng, XIANG Mengru, ZHANG Haiyan, et al. Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions[J]. Energy, 2019, 170: 1067-1081. |
11 | 王珂, 谢金, 刘遵超, 等. 超临界二氧化碳在微细管内的换热特性[J]. 化工学报, 2014, 65(S1): 323-327. |
WANG Ke, XIE Jin, LIU Zunchao, et al. Heat transfer characteristics of supercritical carbon dioxide in a micro-capillary tube[J]. CIESC Journal, 2014, 65(S1): 323-327. | |
12 | KLINE Nathan, FEUERSTEIN Florian, TAVOULARIS Stavros. Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1056-1068. |
13 | 吴新明, 朱兵国, 张良, 等. 圆管内超临界CO2的阻力特性[J]. 化工学报, 2018, 69(12): 5024-5033. |
WU Xinming, ZHU Bingguo, ZHANG Liang, et al. Resistance characteristics of supercritical CO2 in circular tube[J]. CIESC Journal, 2018, 69(12): 5024-5033. | |
14 | 王乃心, 杨大章, 谢晶, 等. 超临界CO2对流换热特性试验研究进展[J]. 流体机械, 2020, 48(11): 73-79. |
WANG Naixin, YANG Dazhang, XIE Jing, et al. A review on experimental studies of convection heat transfer characteristic of supercritical CO2 [J]. Fluid Machinery, 2020, 48(11): 73-79. | |
15 | HUANG Dan, LI Wei. A brief review on the buoyancy criteria for supercritical fluids[J]. Applied Thermal Engineering, 2018, 131: 977-987. |
16 | HUANG Dan, WU Zan, SUNDEN Bengt, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505. |
17 | 朱兵国. 超临界二氧化碳垂直管内对流换热研究[D]. 北京: 华北电力大学, 2020. |
ZHU Bingguo. Study on convective heat transfer in vertical tube of supercritical carbon dioxide[D]. Beijing: North China Electric Power University, 2020. | |
18 | LI Zhouhang, WU Yuxin, TANG Guoli, et al. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube[J]. International Journal of Heat and Mass Transfer, 2015, 84: 529-541. |
19 | WANG Kaizheng, XU Xiaoxiao, WU Yangyang, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. |
20 | JIANG Peixue, LIU Bo, ZHAO Chenru, et al. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 741-749. |
21 | 闫晨帅, 朱兵国, 张海松, 等. 超临界压力CO2在倾斜光管内换热特性数值分析[J]. 中国电机工程学报, 2020, 40(2): 583-592. |
YAN Chenshuai, ZHU Bingguo, ZHANG Haisong, et al. Numerical analysis on heat transfer characteristics of supercritical pressure CO2 in inclined smooth tube[J]. Proceedings of the CSEE, 2020, 40(2): 583-592. | |
22 | ZHU Bingguo, XU Jinliang, WU Xinming, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266. |
23 | JACKSON J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
24 | JACKSON J D, HALL W B. Influences of Buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[J]. Turbulent Forced Convection in Channels and Bundles, 1979: 613-640. |
25 | MCELIGOT D M, COON C W, PERKINS H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433. |
26 | GONG Kaigang, ZHU Bingguo, PENG Bin, et al. Numerical investigation of heat transfer characteristics of scCO2 flowing in a vertically-upward tube with high mass flux[J]. Entropy, 2022, 24(1): 79. |
27 | WINTERTON R H. Where did the Dittus and Boelter equation come from?[J]. International Journal of Heat and Mass Transfer, 1998, 41(4/5): 809-810. |
28 | KIM D E, KIM M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
29 | GUPTA S, SALTANOV E, MOKRY S J, et al. Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes[J]. Nuclear Engineering and Design, 2013, 261: 116-131. |
30 | KIM J K, JEON H K, LEE J S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design, 2007, 237(15/16/17): 1795-1802. |
31 | MOKRY Sarah, PIORO Igor, FARAH Amjad, et al. Development of supercritical water heat-transfer correlation for vertical bare tubes[J]. Nuclear Engineering and Design, 2011, 241(4): 1126-1136. |
[1] | 见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658. |
[2] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[3] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[4] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[5] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[6] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[7] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[8] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[9] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[10] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[11] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[12] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[13] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[14] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[15] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 191
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |