1 |
XU Jinliang, LIU Chao, SUN Enhui, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831.
|
2 |
师亚东, 李靓. 国际能源企业低碳化转型实践研究[J]. 中国能源, 2021, 43(3): 75-79.
|
|
SHI Yadong, LI Liang. Study on the practice of low-carbon transformation of international energy enterprises[J]. Energy of China, 2021, 43(3): 75-79.
|
3 |
王哮江, 刘鹏, 李荣春, 等. “双碳”目标下先进发电技术研究进展及展望[J]. 热力发电, 2022, 51(1): 52-59.
|
|
WANG Xiaojiang, LIU Peng, LI Rongchun, et al. Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality[J]. Thermal Power Generation, 2022, 51(1): 52-59.
|
4 |
张珍珍, 吕清泉, 张健美. “双碳”目标下分布式光伏发电技术的研究进展及展望[J]. 太阳能, 2023(1): 17-21.
|
|
ZHANG Zhenzhen, Qingquan LYU, ZHANG Jianmei. Research progress and prospect of distributed pv power generation technology under the goal of emission peak and carbon neutrality[J]. Solar Energy, 2023(1): 17-21.
|
5 |
徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10.
|
|
XU Jinliang, LIU Chao, SUN Enhui, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10.
|
6 |
JIANG Peixue, ZHANG Yu, ZHAO Chenru, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637.
|
7 |
JIANG Peixue, ZHANG Yu, SHI Runfu. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056.
|
8 |
刘生晖, 黄彦平, 刘光旭, 等. 竖直圆管内超临界二氧化碳强迫对流传热实验研究[J]. 核动力工程, 2017, 38(1): 1-5.
|
|
LIU Shenghui, HUANG Yanping, LIU Guangxu, et al. Investigation of correlation for forced convective heat transfer to supercritical carbon dioxide flowing in a vertical tube[J]. Nuclear Power Engineering, 2017, 38(1): 1-5.
|
9 |
Oğuzhan GÖKKAYA, Efe ÖZTABAK, Hojin AHN. Experimental investigation on heat transfer characteristics of supercritical CO2 flowing upward and downward through a microtube at low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2022, 139: 110717.
|
10 |
GUO Jiangfeng, XIANG Mengru, ZHANG Haiyan, et al. Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions[J]. Energy, 2019, 170: 1067-1081.
|
11 |
王珂, 谢金, 刘遵超, 等. 超临界二氧化碳在微细管内的换热特性[J]. 化工学报, 2014, 65(S1): 323-327.
|
|
WANG Ke, XIE Jin, LIU Zunchao, et al. Heat transfer characteristics of supercritical carbon dioxide in a micro-capillary tube[J]. CIESC Journal, 2014, 65(S1): 323-327.
|
12 |
KLINE Nathan, FEUERSTEIN Florian, TAVOULARIS Stavros. Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1056-1068.
|
13 |
吴新明, 朱兵国, 张良, 等. 圆管内超临界CO2的阻力特性[J]. 化工学报, 2018, 69(12): 5024-5033.
|
|
WU Xinming, ZHU Bingguo, ZHANG Liang, et al. Resistance characteristics of supercritical CO2 in circular tube[J]. CIESC Journal, 2018, 69(12): 5024-5033.
|
14 |
王乃心, 杨大章, 谢晶, 等. 超临界CO2对流换热特性试验研究进展[J]. 流体机械, 2020, 48(11): 73-79.
|
|
WANG Naixin, YANG Dazhang, XIE Jing, et al. A review on experimental studies of convection heat transfer characteristic of supercritical CO2 [J]. Fluid Machinery, 2020, 48(11): 73-79.
|
15 |
HUANG Dan, LI Wei. A brief review on the buoyancy criteria for supercritical fluids[J]. Applied Thermal Engineering, 2018, 131: 977-987.
|
16 |
HUANG Dan, WU Zan, SUNDEN Bengt, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505.
|
17 |
朱兵国. 超临界二氧化碳垂直管内对流换热研究[D]. 北京: 华北电力大学, 2020.
|
|
ZHU Bingguo. Study on convective heat transfer in vertical tube of supercritical carbon dioxide[D]. Beijing: North China Electric Power University, 2020.
|
18 |
LI Zhouhang, WU Yuxin, TANG Guoli, et al. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube[J]. International Journal of Heat and Mass Transfer, 2015, 84: 529-541.
|
19 |
WANG Kaizheng, XU Xiaoxiao, WU Yangyang, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120.
|
20 |
JIANG Peixue, LIU Bo, ZHAO Chenru, et al. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 741-749.
|
21 |
闫晨帅, 朱兵国, 张海松, 等. 超临界压力CO2在倾斜光管内换热特性数值分析[J]. 中国电机工程学报, 2020, 40(2): 583-592.
|
|
YAN Chenshuai, ZHU Bingguo, ZHANG Haisong, et al. Numerical analysis on heat transfer characteristics of supercritical pressure CO2 in inclined smooth tube[J]. Proceedings of the CSEE, 2020, 40(2): 583-592.
|
22 |
ZHU Bingguo, XU Jinliang, WU Xinming, et al. Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes[J]. International Journal of Thermal Sciences, 2019, 136: 254-266.
|
23 |
JACKSON J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40.
|
24 |
JACKSON J D, HALL W B. Influences of Buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[J]. Turbulent Forced Convection in Channels and Bundles, 1979: 613-640.
|
25 |
MCELIGOT D M, COON C W, PERKINS H C. Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433.
|
26 |
GONG Kaigang, ZHU Bingguo, PENG Bin, et al. Numerical investigation of heat transfer characteristics of scCO2 flowing in a vertically-upward tube with high mass flux[J]. Entropy, 2022, 24(1): 79.
|
27 |
WINTERTON R H. Where did the Dittus and Boelter equation come from?[J]. International Journal of Heat and Mass Transfer, 1998, 41(4/5): 809-810.
|
28 |
KIM D E, KIM M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349.
|
29 |
GUPTA S, SALTANOV E, MOKRY S J, et al. Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes[J]. Nuclear Engineering and Design, 2013, 261: 116-131.
|
30 |
KIM J K, JEON H K, LEE J S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design, 2007, 237(15/16/17): 1795-1802.
|
31 |
MOKRY Sarah, PIORO Igor, FARAH Amjad, et al. Development of supercritical water heat-transfer correlation for vertical bare tubes[J]. Nuclear Engineering and Design, 2011, 241(4): 1126-1136.
|