化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2332-2342.DOI: 10.16085/j.issn.1000-6613.142022-1366

• 能源加工与技术 • 上一篇    下一篇

纳米颗粒强化传热的多级潜热储热器性能评价

张晨宇1(), 王宁2, 徐洪涛1(), 罗祝清1   

  1. 1.上海理工大学能源与动力工程学院,上海 200093
    2.西安交通大学热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2022-07-21 修回日期:2022-11-06 出版日期:2023-05-10 发布日期:2023-06-02
  • 通讯作者: 徐洪涛
  • 作者简介:张晨宇(1995—),女,博士研究生,研究方向为太阳能利用及潜热储热技术。E-mail:chenyuz0131@163.com
  • 基金资助:
    上海市自然科学基金面上项目(20ZR1438700)

Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement

ZHANG Chenyu1(), WANG Ning2, XU Hongtao1(), LUO Zhuqing1   

  1. 1.School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2022-07-21 Revised:2022-11-06 Online:2023-05-10 Published:2023-06-02
  • Contact: XU Hongtao

摘要:

利用潜热储热(latent heat thermal energy storage,LHTES)系统能够缓解能源供需不匹配的问题。本文设计一种垂直管壳式LHTES储热单元,多级填充熔点为35℃、42℃和50℃的相变材料(phase change material, PCM),Al2O3纳米颗粒分别添加至PCM和换热流体中强化传热。对比多级与单级LHTES储热单元的储热及储㶲性能;提出考虑复合PCM体积和储热时间的储热储㶲密度评价标准,分析不同纳米颗粒体积分数(1%、3%、5%、7%、9%、11%)对多级储热单元性能的影响。结果表明:相同工况下,相较于单级填充熔点50℃复合PCM的储热单元,多级复合PCM的使用可将储热时间缩短29.81%,且多级储热单元同时表现出较高的储热量和储㶲量;纳米颗粒体积分数从1%增加至11%时,多级储热单元的储热速率提高21.31%,储热密度增大15.61%,而储㶲密度在体积分数为7%时达到最大值3086J/(m3·s)后逐渐降低。综合考虑复合PCM体积、储热时间以及总储热和储㶲量,填充纳米颗粒体积分数为7%的多级储热单元性能最优,相较于纳米颗粒体积分数为1%时,储热和储㶲密度分别提升11.57%和12.96%。本文可为多级LHTES系统的应用与优化提供理论参考。

关键词: 潜热储热, 相变材料, 纳米材料, 传热, ?, 数值模拟

Abstract:

Using latent heat thermal energy storage (LHTES) system can alleviate the mismatch between the energy supply and demand. In this paper, a vertical shell and tube LHTES unit was designed, and multiple layer phase change materials (PCMs) with melting temperatures of 35℃, 42℃, and 50℃ were filled. The nanoparticle of Al2O3 was added in PCM and heat transfer fluid for heat transfer enhancement. The thermal energy and exergy performance of the multiple LHTES unit were compared with the single layer unit. The thermal energy and exergy density evaluation criteria that comprehensively considered the volume of the composite PCM and the heat storage time were proposed. The effects of different nanoparticle volume fractions (1%, 3%, 5%, 7%, 9%, and 11%) on the performance of the multiple LHTES unit were analyzed. The results showed that compared to the single layer unit with a melting temperature of 50℃ of composite PCM, the heat storage time of the multiple LHTES unit was reduced by 29.81% under the same condition. Moreover, the multiple LHTES unit simultaneously presented higher thermal energy and exergy storage amounts. When the volume fraction of nanoparticles increased from 1% to 11%, the heat storage rate of the multiple LHTES unit could be improved by 21.31%, the thermal energy storage density increased by 15.61%, and the thermal exergy density decreased after reaching the maximum value of 3086J/(m3·s) at the volume fraction of the nanoparticle of 7%. Considering the volume of composite PCM, heat storage time, and total thermal energy and exergy storage amounts, the multiple LHTES unit presented the best performance with a nanoparticle volume fraction of 7%. Compared with the nanoparticle volume fraction of 1%, the thermal energy and exergy storage densities increased by 11.57% and 12.96%, respectively. This paper provided a theoretical reference for the application and optimization of multiple LHTES systems.

Key words: latent heat thermal energy storage, phase change material, nanomaterials, heat transfer, exergy, numerical simulation

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn