化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2343-2352.DOI: 10.16085/j.issn.1000-6613.2022-1276
徐贤1,2(), 崔楼伟3, 刘杰1,2, 施俊合1,2, 朱永红1,2, 刘姣姣1,2, 刘涛1,2, 郑化安1,2(), 李冬1,2()
收稿日期:
2022-07-07
修回日期:
2022-08-25
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
郑化安,李冬
作者简介:
徐贤(1995—),男,硕士研究生,研究方向为煤焦油深加工。E-mail:1273809075@qq.com。
基金资助:
XU Xian1,2(), CUI Louwei3, LIU Jie1,2, SHI Junhe1,2, ZHU Yonghong1,2, LIU Jiaojiao1,2, LIU Tao1,2, ZHENG Hua’an1,2(), LI Dong1,2()
Received:
2022-07-07
Revised:
2022-08-25
Online:
2023-05-10
Published:
2023-06-02
Contact:
ZHENG Hua’an, LI Dong
摘要:
以中低温煤焦油全馏分加氢尾油(FHT)和>350℃中低温煤焦油沥青(CTP)为原料,制备出不同微观结构的半焦。采用元素分析、核磁共振氢谱、傅里叶变换红外光谱、气相色谱-质谱联用等手段对原料的组成结构进行表征,研究了原料组成对中间相结构发展的影响。结果表明:FHT含有25.94%环烷烃且芳环侧链以环烷结构为主,CTP中含有3.92%环烷烃且芳环侧链以短烷基为主,FHT的含氧杂环化合物含量比CTP低。热聚实验表明具有环烷结构含量高、含氧杂环化合物含量低的原料(FHT),有利于降低炭化反应活性和反应体系黏度,促进中间相有序发展。采用偏光显微镜、扫描电子显微镜和X射线衍射对半焦的微观结构和微晶参数进行分析,结果表明,CTP的氧含量和QI含量高,容易生成镶嵌结构,微晶排列扭曲,取向性差,而FHT中富含环烷结构以及氧含量低,芳烃片层分子更容易有序堆叠形成细纤维结构且内部碳微晶排列更加规整,更易石墨化。此外,利用纤维软件对半焦的光学组织结构进行了定量分析,发现FHT制备的半焦的纤维结构质量分数为79.84%,而CTP制备的半焦的纤维结构质量分数为22.18%。
中图分类号:
徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352.
XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352.
原料 | C/% | H/% | O/% | N/% | S/% | C/H | 喹啉不溶物(QI) /% | 平均 分子量 |
---|---|---|---|---|---|---|---|---|
FHT | 88.37 | 10.8 | 0.83 | 0 | 0 | 0.68 | 0.06 | 385 |
CTP | 83.94 | 7.61 | 7.3 | 0.75 | 0.4 | 0.92 | 0.62 | 334 |
表1 原料的基础性质(质量分数)
原料 | C/% | H/% | O/% | N/% | S/% | C/H | 喹啉不溶物(QI) /% | 平均 分子量 |
---|---|---|---|---|---|---|---|---|
FHT | 88.37 | 10.8 | 0.83 | 0 | 0 | 0.68 | 0.06 | 385 |
CTP | 83.94 | 7.61 | 7.3 | 0.75 | 0.4 | 0.92 | 0.62 | 334 |
显微组分名称 | 长度/μm | 宽度/μm | 长宽比 |
---|---|---|---|
镶嵌 | <10 | <10 | |
小片 | 10~30 | 10~30 | |
大片 | >30 | >30 | |
短纤维 | <30 | <30 | 2.5 |
细纤维 | >10 | <10 | >5 |
粗纤维 | >30 | 10~30 |
表2 半焦光学结构的划分标准
显微组分名称 | 长度/μm | 宽度/μm | 长宽比 |
---|---|---|---|
镶嵌 | <10 | <10 | |
小片 | 10~30 | 10~30 | |
大片 | >30 | >30 | |
短纤维 | <30 | <30 | 2.5 |
细纤维 | >10 | <10 | >5 |
粗纤维 | >30 | 10~30 |
分类 | 峰位置/cm-1 | 质量分数/% | |
---|---|---|---|
FHT | CTP | ||
非对称RCH3 | 2953 | 13.46 | 19.64 |
非对称R2CH2 | 2920 | 45.18 | 43.63 |
非对称R3CH | 2892 | 13.63 | 11.99 |
对称RCH3 | 2872 | 4.51 | 6.72 |
对称R2CH2 | 2851 | 23.22 | 19.64 |
n(CH2)/n(CH3) | 3.36 | 2.22 | |
1H | 865 | 18.25 | 3.46 |
2H | 812 | 38.54 | 32.07 |
4H | 764 | 5.98 | 56 |
(CH2) n≥4 | 721 | 37.22 | 8.47 |
表3 脂肪族C—H弯曲振动区和芳香族氢键区分峰拟合结果
分类 | 峰位置/cm-1 | 质量分数/% | |
---|---|---|---|
FHT | CTP | ||
非对称RCH3 | 2953 | 13.46 | 19.64 |
非对称R2CH2 | 2920 | 45.18 | 43.63 |
非对称R3CH | 2892 | 13.63 | 11.99 |
对称RCH3 | 2872 | 4.51 | 6.72 |
对称R2CH2 | 2851 | 23.22 | 19.64 |
n(CH2)/n(CH3) | 3.36 | 2.22 | |
1H | 865 | 18.25 | 3.46 |
2H | 812 | 38.54 | 32.07 |
4H | 764 | 5.98 | 56 |
(CH2) n≥4 | 721 | 37.22 | 8.47 |
化学位移 | 氢的类型 | 不同氢类型的质量分数/% | |
---|---|---|---|
FHT | CTP | ||
0.5~1.1 | H γ (芳环≥γ位的CH3的H,烷烃CH3上的H) | 24.75 | 10.82 |
1.1~2.1 | H β (芳环β碳上的H及β位以远的CH、CH2上的H,烷烃CH、CH2上的H) | 52.10 | 32.46 |
2.1~4.5 | H α (与芳环α碳直接相连的H) | 14.21 | 27.49 |
6.5~9.5 | Har(芳香氢) | 8.94 | 29.24 |
表4 原料的氢种类及含量
化学位移 | 氢的类型 | 不同氢类型的质量分数/% | |
---|---|---|---|
FHT | CTP | ||
0.5~1.1 | H γ (芳环≥γ位的CH3的H,烷烃CH3上的H) | 24.75 | 10.82 |
1.1~2.1 | H β (芳环β碳上的H及β位以远的CH、CH2上的H,烷烃CH、CH2上的H) | 52.10 | 32.46 |
2.1~4.5 | H α (与芳环α碳直接相连的H) | 14.21 | 27.49 |
6.5~9.5 | Har(芳香氢) | 8.94 | 29.24 |
结构参数 | FHT | CTP |
---|---|---|
芳香度fa | 0.4 | 0.58 |
芳香环取代度σ | 0.56 | 0.31 |
芳香环系缩合度参数HAU/CA | 0.54 | 0.82 |
总氢原子数HT | 58.64 | 45.61 |
总碳原子数CT | 39.77 | 41.77 |
芳香碳原子数CA | 14.13 | 24.66 |
饱和碳原子数CS | 25.64 | 15.31 |
芳环系α碳原子数C α | 4.16 | 6.22 |
芳环系统外围碳原子数Cap | 7.38 | 18.68 |
芳香环系内碳原子数Ci | 6.74 | 6.98 |
芳环数RA | 3.63 | 6.17 |
总环数RT | 4.78 | 6.81 |
环烷环数RN | 1.35 | 0.64 |
环烷碳原子数CN | 5.40 | 2.58 |
平均烷基侧链碳原子数n | 4.14 | 1.65 |
平均链长参数L | 4.89 | 7.71 |
表5 原料的平均分子结构参数
结构参数 | FHT | CTP |
---|---|---|
芳香度fa | 0.4 | 0.58 |
芳香环取代度σ | 0.56 | 0.31 |
芳香环系缩合度参数HAU/CA | 0.54 | 0.82 |
总氢原子数HT | 58.64 | 45.61 |
总碳原子数CT | 39.77 | 41.77 |
芳香碳原子数CA | 14.13 | 24.66 |
饱和碳原子数CS | 25.64 | 15.31 |
芳环系α碳原子数C α | 4.16 | 6.22 |
芳环系统外围碳原子数Cap | 7.38 | 18.68 |
芳香环系内碳原子数Ci | 6.74 | 6.98 |
芳环数RA | 3.63 | 6.17 |
总环数RT | 4.78 | 6.81 |
环烷环数RN | 1.35 | 0.64 |
环烷碳原子数CN | 5.40 | 2.58 |
平均烷基侧链碳原子数n | 4.14 | 1.65 |
平均链长参数L | 4.89 | 7.71 |
样品 | 光学显微结构质量分数/% | 总纤维 质量分数/% | |||||
---|---|---|---|---|---|---|---|
镶嵌 | 小片 | 大片 | 短纤维 | 粗纤维 | 细纤维 | ||
FHT-G1 | 14.17 | 69.57 | 16.26 | 0.00 | 0.00 | 0.00 | 0.00 |
FHT-G2 | 8.56 | 38.25 | 29.26 | 18.56 | 5.37 | 0.00 | 23.93 |
FHT-G3 | 4.26 | 12.89 | 15.79 | 28.65 | 22.77 | 15.64 | 67.06 |
FHT-G4 | 2.14 | 7.37 | 10.65 | 21.21 | 30.21 | 28.42 | 79.84 |
CTP-1 | 35.62 | 57.76 | 6.62 | 0.00 | 0.00 | 0.00 | 0.00 |
CTP-2 | 28.62 | 47.92 | 15.41 | 6.84 | 1.21 | 0.00 | 8.05 |
CTP-3 | 22.62 | 42.51 | 19.82 | 9.84 | 5.21 | 0.00 | 15.05 |
CTP-4 | 19.65 | 33.52 | 24.65 | 12.21 | 7.86 | 2.11 | 22.18 |
表6 不同半焦的光学结构含量分布
样品 | 光学显微结构质量分数/% | 总纤维 质量分数/% | |||||
---|---|---|---|---|---|---|---|
镶嵌 | 小片 | 大片 | 短纤维 | 粗纤维 | 细纤维 | ||
FHT-G1 | 14.17 | 69.57 | 16.26 | 0.00 | 0.00 | 0.00 | 0.00 |
FHT-G2 | 8.56 | 38.25 | 29.26 | 18.56 | 5.37 | 0.00 | 23.93 |
FHT-G3 | 4.26 | 12.89 | 15.79 | 28.65 | 22.77 | 15.64 | 67.06 |
FHT-G4 | 2.14 | 7.37 | 10.65 | 21.21 | 30.21 | 28.42 | 79.84 |
CTP-1 | 35.62 | 57.76 | 6.62 | 0.00 | 0.00 | 0.00 | 0.00 |
CTP-2 | 28.62 | 47.92 | 15.41 | 6.84 | 1.21 | 0.00 | 8.05 |
CTP-3 | 22.62 | 42.51 | 19.82 | 9.84 | 5.21 | 0.00 | 15.05 |
CTP-4 | 19.65 | 33.52 | 24.65 | 12.21 | 7.86 | 2.11 | 22.18 |
样品 | 2θ002/(°) | d002/nm | β002/(°) | 2θ100/(°) | β100/(°) | La/nm | Lc/nm | N |
---|---|---|---|---|---|---|---|---|
FTH-G1 | 25.783 | 0.3426 | 0.861 | 42.740 | 0.658 | 25.517 | 9.368 | 28.34 |
FTH-G2 | 25.803 | 0.3424 | 0.859 | 42.837 | 0.643 | 26.121 | 9.390 | 28.43 |
FTH-G2 | 25.811 | 0.3422 | 0.855 | 42.821 | 0.624 | 26.915 | 9.434 | 28.56 |
FTH-G4 | 25.836 | 0.3419 | 0.853 | 42.719 | 0.617 | 27.211 | 9.456 | 28.66 |
CTP-1 | 25.508 | 0.3463 | 0.961 | 43.14 | 0.89 | 18.891 | 8.388 | 25.22 |
CTP-2 | 25.541 | 0.3459 | 0.991 | 43.22 | 0.88 | 19.111 | 8.135 | 24.52 |
CTP-3 | 25.594 | 0.3452 | 0.996 | 43.143 | 0.869 | 19.348 | 8.095 | 24.45 |
CTP-4 | 25.605 | 0.3450 | 0.998 | 43.12 | 0.89 | 18.890 | 8.079 | 24.42 |
表7 半焦的微晶结构参数
样品 | 2θ002/(°) | d002/nm | β002/(°) | 2θ100/(°) | β100/(°) | La/nm | Lc/nm | N |
---|---|---|---|---|---|---|---|---|
FTH-G1 | 25.783 | 0.3426 | 0.861 | 42.740 | 0.658 | 25.517 | 9.368 | 28.34 |
FTH-G2 | 25.803 | 0.3424 | 0.859 | 42.837 | 0.643 | 26.121 | 9.390 | 28.43 |
FTH-G2 | 25.811 | 0.3422 | 0.855 | 42.821 | 0.624 | 26.915 | 9.434 | 28.56 |
FTH-G4 | 25.836 | 0.3419 | 0.853 | 42.719 | 0.617 | 27.211 | 9.456 | 28.66 |
CTP-1 | 25.508 | 0.3463 | 0.961 | 43.14 | 0.89 | 18.891 | 8.388 | 25.22 |
CTP-2 | 25.541 | 0.3459 | 0.991 | 43.22 | 0.88 | 19.111 | 8.135 | 24.52 |
CTP-3 | 25.594 | 0.3452 | 0.996 | 43.143 | 0.869 | 19.348 | 8.095 | 24.45 |
CTP-4 | 25.605 | 0.3450 | 0.998 | 43.12 | 0.89 | 18.890 | 8.079 | 24.42 |
1 | ESER S, JENKINS R G. Carbonization of petroleum feedstocks I: Relationships between chemical constitution of the feedstocks and mesophase development[J]. Carbon, 1989, 27(6): 877-887. |
2 | CHENG Xianglin, ZHA Qingfang, LI Xuejun, et al. Modified characteristics of mesophase pitch prepared from coal tar pitch by adding waste polystyrene[J]. Fuel Processing Technology, 2008, 89(12): 1436-1441. |
3 | GUO Aijun, LIN Xiangqin, LIU Dong, et al. Investigation on shot-coke-forming propensity and controlling of coke morphology during heavy oil coking[J]. Fuel Processing Technology, 2012, 104: 332-342. |
4 | WANG Liyong, LIU Zhanjun, GUO Quangui, et al. Structure of silicon-modified mesophase pitch-based graphite fibers[J]. Carbon, 2015, 94:335-341. |
5 | LOU Bin, LIU Dong, FU Yue, et al. Investigation on the development and orientation of mesophase microstructure during the two-stage pyrolysis of FCC decant oil[J]. Fuel, 2020, 263: 116626. |
6 | ALVAREZ P, DÍEZ N, SANTAMARÍA R, et al. Novel coal-based precursors for cokes with highly oriented microstructures[J]. Fuel, 2012, 95: 400-406. |
7 | HALIM H P, IM J S, LEE C W. Preparation of needle coke from petroleum by-products[J]. Carbon Letters, 2013, 14(3): 152-161. |
8 | GREINKE R A. Quantitative influence of dealkylation and polymerization reactions on mesophase formation[J]. Carbon, 1990, 28(5): 701-706. |
9 | WANG X S, MATSUMOTO M, SHONO H, et al. Hydrogenation mechanism of coal tar pitch for carbon fiber (Part3). Effects of hydrotreatment on pyrolysis reactivity of each component in coal tar pitch for high performance carbon fiber[J]. Journal of the Japan Petroleum Institute, 1991, 34(4): 314-321. |
10 | YOKONO Tetsuro, MARSH Harry, YOKONO Megumi. Hydrogen donor and acceptor abilities of pitch: 1H NMR study of hydrogen transfer to anthracene[J]. Fuel, 1981, 60(7): 607-611. |
11 | YOON K E, LEE E S, KORAI Y, et al. Comparison of mesophase pitches derived from C8 and C9 aromatic hydrocarbons[J]. Carbon, 1994, 32(3): 453-459. |
12 | MIYAKE Mikio, Toru IDA, YOSHIDA Hiroshi, et al. Effects of reductively introduced alkyl groups and hydrogen to mesophase pitch on carbonization properties[J]. Carbon, 1993, 31(5): 705-714. |
13 | ZHU Yaming, ZHAO Chunlei, XU Yunliang, et al. Preparation and characterization of coal pitch-based needle coke (Part I): The effects of aromatic index (fa) in refined coal pitch[J]. Energy & Fuels, 2019, 33(4): 3456-3464. |
14 | LIU Jie, SHI Xuemei, CUI Louwei, et al. Effect of raw material composition on the structure of needle coke[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 546-553. |
15 | LIU Shizhe, XUE Jilai, LIU Xuan, et al. Pitch derived graphene oxides: Characterization and effect on pyrolysis and carbonization of coal tar pitch[J]. Journal of Analytical & Applied Pyrolysis, 2020, 145: 104746. |
16 | ESER S, JENKINS R G. Carbonization of petroleum feedstocks Ⅱ: Chemical constitution of feedstock asphaltenes and mesophase development[J]. Carbon, 1989, 27(6):889-897. |
17 | KORAI Yozo, MOCHIDA Isao. Preparation and properties of carbonaceous mesophase-i soluble mesophase produced from A240 and coal tar pitch[J]. Carbon, 1985, 23(1): 97-103. |
18 | MOCHIDA Isao, KORAI Yozo, KU Chahun, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon, 2000, 38(2): 305-328. |
19 | MOCHIDA Isao, MATSUOKA Hideichi, FUJITSU Hiroshi, et al. Carbonization properties of partially hydrogenated aromatic compounds—Ⅰ[J]. Carbon, 1981, 19(3): 213-216. |
20 | LI Ming, LIU Dong, DU Hui, et al. Preparation of mesophase pitch by aromatics-rich distillate of naphthenic vacuum gas oil[J]. Applied Petrochemical Research, 2015, 5(4): 339-346. |
21 | ZHU Yaming, ZHAO Xuefei, YUAN Ji, et al. Changes in structure of coal liquefied pitch during liquid-phase carbonization process[J]. Carbon Letters, 2019, 29(1): 37-45. |
22 | LI Ming, LIU Dong, LOU Bin, et al. Hydroalkylation modification of naphthene-based aromatic-rich fraction and its influences on mesophase development[J]. RSC Advances, 2018, 8(7): 3750-3759. |
23 | ZHANG Zhicheng, DU Huiming, GUO Shuhai, et al. Probing the effect of molecular structure and compositions in extracted oil on the characteristics of needle coke[J]. Fuel, 2021, 301: 120984. |
24 | LIU Dong, LOU Bin, LI Ming, et al. Study on the preparation of mesophase pitch from modified naphthenic vacuum residue by direct thermal treatment[J]. Energy & Fuels, 2016, 30(6): 4609-4618. |
25 | LI Ming, LIU Dong, Renqing LYU, et al. Preparation of the mesophase pitch by hydrocracking tail oil from a naphthenic vacuum residue[J]. Energy & Fuels, 2015, 29(7): 4193-4200. |
26 | MATSUMOTO Tadayuki, MOCHIDA Isao. A structural study on oxidative stabilization of mesophase pitch fibers derived from coaltar[J]. Carbon, 1992, 30(7): 1041-1046. |
27 | YUAN Guanming, LI Xuanke, XIONG Xiaoqing, et al. A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen[J]. Carbon, 2017, 115: 59-76. |
28 | KUMAR Subhash, SRIVASTAVA Manoj. Influence of presence/addition of asphaltenes on semi-coke textures and mesophase development in petroleum feed stocks[J]. Fuel, 2016, 173: 69-78. |
29 | TAYLOR G H, PENNOCK G M, FITZ GERALD J D, et al. Influence of QI on mesophase structure[J]. Carbon, 1993, 31(2):341-354. |
30 | Jun LYU, BAI Haitao, ZHU Yaming, et al. Synthesis and characterization of mesophase coke from medium-low-temperature coal tar pitch modified by high-pressure thermal polymerization[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(4): e2643. |
31 | ZHU Yaming, ZHAO Xuefei, GAO Lijuan, et al. Study on the pyrolysis characteristic and the microstructure of the pyrolysis products of β resins from different coal tar pitch[J]. Journal Chemical Society of Pakistan, 2018, 40(2):343-353. |
32 | LI Ming, LIU Dong, LOU Bin, et al. Effects of inductive condensation on mesophase development during aromatic-rich oil carbonization[J]. Energy & Fuels, 2019, 33(8): 7200-7205. |
33 | HU Chaoshuai, CHU Hongyu, ZHU Yaming, et al. Differences and correlations between microstructure and macroscopic properties of mesophase cokes derived from the components of high temperature coal tar pitch[J]. Fuel, 2022, 310: 122330. |
34 | WANG Guohua, ESER Semih. Molecular composition of the high-boiling components of needle coke feedstocks and mesophase development[J]. Energy & Fuels, 2007, 21(6): 3563-3572. |
35 | FAN Xiaohua, FEI Youqing, CHEN Lei, et al. Distribution and structural analysis of polycyclic aromatic hydrocarbons abundant in coal tar pitch[J]. Energy & Fuels, 2017, 31(5): 4694-4704. |
36 | LOEH M O, BADACZEWSKI F, FABER K, et al. Analysis of thermally induced changes in the structure of coal tar pitches by an advanced evaluation method of X-ray scattering data[J]. Carbon, 2016, 109: 823-835. |
37 | 中华人民共和国工业和信息化部. 煤系针状焦中间相焦: [S]. 北京: 冶金工业出版社, 2020. |
Ministry of Industry and Information Technology of the People’s Republic of China. Mesophase coke of coal-based needle coke: [S]. Beijing: Metallurgical Industry Press, 2020. | |
38 | ZHU Yonghong, TIAN Feng, LIU Yaqing, et al. Comparison of the composition and structure for coal-derived and petroleum heavy subfraction by an improved separation method[J]. Fuel, 2021, 292: 120362. |
39 | DOMINGO L R, RÍOS-GUTIÉRREZ M, AURELL M J. Unveiling the regioselectivity in electrophilic aromatic substitution reactions of deactivated benzenes through molecular electron density theory[J]. New Journal of Chemistry, 2021, 45(30): 13626-13638. |
40 | CAMPUZANO F, ABDUL JAMEEL A G, ZHANG W, et al. Fuel and chemical properties of waste tire pyrolysis oil derived from a continuous twin-auger reactor[J]. Energy & Fuels, 2020, 34(10): 12688-12702. |
41 | ZHANG Zhichen, YU Enqiang, LIU Yanjun, et al. The effect of composition change and allocation in raw material on the carbonaceous structural evolution during calcination process[J]. Fuel, 2022, 309: 122173. |
42 | GUO Yanling, LI Yunmei, RAN Nani, et al. Co-carbonization effect of asphaltine and heavy oil in mesophase development[J]. Journal of Materials Science, 2016, 51(5): 2558-2564. |
[1] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[2] | 蔡举艳, 苏琼, 王彦斌, 王鸿灵, 梁俊玺, 王忠旭, 郭丽, 赵利斌. 可生物降解泡沫材料的研究进展[J]. 化工进展, 2023, 42(3): 1457-1470. |
[3] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
[4] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[5] | 龚鑫, 刘小冬, 温福山, 师楠, 刘东. 中间相炭微球乳化-聚合法制备及电化学性能[J]. 化工进展, 2022, 41(5): 2379-2388. |
[6] | 雷瑜, 田蒙蒙, 张心亚, 蒋翔. 超疏水表面自修复及应用的研究进展[J]. 化工进展, 2021, 40(5): 2624-2633. |
[7] | 赵春雷, 朱亚明, 高丽娟, 程俊霞, 赖仕全, 赵雪飞. 乙烯渣油沥青的氧化改性及其热转化行为[J]. 化工进展, 2021, 40(4): 2130-2137. |
[8] | 杨婷, 白世刚, 王振平, 沈小瑞, 侯志勇, 李弯弯. 成型活性半焦的制备工艺与应用进展[J]. 化工进展, 2020, 39(S1): 180-185. |
[9] | 郑烨, 李建波, 张锴, 关彦军, 杨凤玲, 程芳琴. 酸性氧化物和酸碱比对煤灰熔融行为的影响[J]. 化工进展, 2020, 39(9): 3617-3625. |
[10] | 郑金欣,田育成,郝博天,淡勇,李稳宏,黄晔,高峰,李冬. 中低温煤焦油基炭微球的制备[J]. 化工进展, 2020, 39(2): 649-657. |
[11] | 郑烨,李建波,关彦军,杨凤玲,张锴,程芳琴. 碱性氧化物对煤灰熔融特征行为的影响[J]. 化工进展, 2020, 39(2): 496-505. |
[12] | 陈颢, 从海峰, 何林, 李洪, 高鑫, 李鑫钢. 进料组成对中部蒸汽压缩两段式精馏塔节能与经济效益的影响[J]. 化工进展, 2020, 39(12): 5042-5048. |
[13] | 曾诚, 宋国杰, 孙海彦, 郭书贤, 孟超然, 孙付保. 甘油预处理蔗渣的木质素分离提取及结构表征[J]. 化工进展, 2020, 39(11): 4418-4426. |
[14] | 张亮,张玉明,张浩然,杨行,温宏炎,高士秋. 催化裂化油浆固含量测定及组成分析[J]. 化工进展, 2019, 38(9): 4052-4059. |
[15] | 杨世诚, 孙琦, 谌伦建, 张玉龙, 薛晓晓, 仪桂云. 赤泥改性及其对丁苯橡胶复合材料微观结构和力学性能的影响[J]. 化工进展, 2019, 38(07): 3297-3303. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |