化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1457-1470.DOI: 10.16085/j.issn.1000-6613.2022-0785
蔡举艳1,2,3,4(), 苏琼1,2,3,4(), 王彦斌1,2,3,4, 王鸿灵1,2,3,4, 梁俊玺1,2,3,4, 王忠旭1,2,3,4, 郭丽1,2,3,4, 赵利斌5
收稿日期:
2022-04-29
修回日期:
2022-07-03
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
苏琼
作者简介:
蔡举艳(1997—),女,硕士研究生,研究方向为生物质的综合利用及功能材料的制备。E-mail:2419273474@qq.com。
基金资助:
CAI Juyan1,2,3,4(), SU Qiong1,2,3,4(), WANG Yanbin1,2,3,4, WANG Hongling1,2,3,4, LIANG Junxi1,2,3,4, WANG Zhongxu1,2,3,4, GUO Li1,2,3,4, ZHAO Libin5
Received:
2022-04-29
Revised:
2022-07-03
Online:
2023-03-15
Published:
2023-04-10
Contact:
SU Qiong
摘要:
大量以石化资源为原料的传统有机泡沫材料的使用加剧了此类资源的枯竭,且其废弃物于自然环境中难以降解,严重污染环境。与此相比,可生物降解泡沫具有生物相容性、生物降解性和可再生性,是一种环境友好材料,受到了世界各国的广泛关注。本文对比了挤出发泡、模压发泡和冷冻干燥发泡3种常见可生物降解泡沫材料的发泡工艺及原理、应用及优缺点,介绍了发泡工艺对材料性能及应用的影响,指出利用天然高分子化合物或其他可再生资源模拟天然泡沫的微观化学网络结构制备高性能可生物降解泡沫的工艺具有巨大的发展潜力;综述了天然泡沫、仿生泡沫和生物质泡沫3种泡沫材料的研究现状,重点探讨了草木类、非异氰酸酯类和木质纤维素泡沫材料的研究进展,分析了典型发泡配方及各组分作用,指出绿色介质、提高塑性及配方的进一步开发是未来可生物降解泡沫材料的发展及研究方向。
中图分类号:
蔡举艳, 苏琼, 王彦斌, 王鸿灵, 梁俊玺, 王忠旭, 郭丽, 赵利斌. 可生物降解泡沫材料的研究进展[J]. 化工进展, 2023, 42(3): 1457-1470.
CAI Juyan, SU Qiong, WANG Yanbin, WANG Hongling, LIANG Junxi, WANG Zhongxu, GUO Li, ZHAO Libin. Research progress on biodegradable foaming materials[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1457-1470.
发泡方法 | 原理 | 优缺点 | 性能特点 | 应用 | 参考文献 |
---|---|---|---|---|---|
挤出发泡 | 物料依次进入进料区、混炼区;加热熔融,气体融入物料,形成气体-聚合物;推进至模具区挤出;快速降压,含有气体的物料区逐渐发泡;冷却、成型 | 优点:工艺简单、连续;时间短(2~15min);不需要预成型;黏度、冲击强度和热均质性好 缺点:温度高;成本高;孔径难控制;产品中存在残留物 | 吸声性能高 | 吸声 | [ |
密度小、热负荷和冷负荷高 | 低能耗建筑装潢 | [ | |||
膨胀率高、吸水指数低 | 轻质缓冲包装 | [ | |||
孔径大和吸水率高 | 吸水剂 | [ | |||
模压成型发泡 | 物料加入模具中;热压、糊化形成厚的糊状物;物料中的水迅速蒸发,糊状物急剧膨胀而发泡;冷却、成型 | 优点:操作简单;孔隙率高;易于控制孔径和形状 缺点:成本较高;制备较厚或较大体积材料时孔径难控制;不适合制备凹陷、侧面斜度等复杂制品 | 平衡水分能力好、杨氏模量高 | 半硬质泡沫,食品储藏、保鲜 | [ |
密度较大、热稳定性好、拉伸强度和抗弯强度高 | 硬质缓冲包装 | [ | |||
拉伸强度高、热导率低 | 保温隔热 | [ | |||
冷冻干燥发泡 | 物料加入模具中;物料低温下快速或缓慢冻结;冷冻干燥,物料中水分子升华;水蒸气逸出发泡 | 优点:操作简单;孔隙连通均匀;细胞结构由冰晶的大小和分布控制;高冻结速率下形成微孔泡沫,低冻结速率形成介孔泡沫 缺点:膨胀率低;孔径不易控制,可能产生片状结构;处理时间长,不适用于所有材料 | 比表面积大、疏水性好、吸油率高 | 吸油剂 | [ |
连续三维网络结构、热导率低 | 保温隔热 | [ | |||
孔径小、孔隙率高、止血、无毒 | 药物输送和止血敷料 | [ |
表1 挤出发泡、模压发泡和冷冻干燥发泡的原理、性能及应用对比
发泡方法 | 原理 | 优缺点 | 性能特点 | 应用 | 参考文献 |
---|---|---|---|---|---|
挤出发泡 | 物料依次进入进料区、混炼区;加热熔融,气体融入物料,形成气体-聚合物;推进至模具区挤出;快速降压,含有气体的物料区逐渐发泡;冷却、成型 | 优点:工艺简单、连续;时间短(2~15min);不需要预成型;黏度、冲击强度和热均质性好 缺点:温度高;成本高;孔径难控制;产品中存在残留物 | 吸声性能高 | 吸声 | [ |
密度小、热负荷和冷负荷高 | 低能耗建筑装潢 | [ | |||
膨胀率高、吸水指数低 | 轻质缓冲包装 | [ | |||
孔径大和吸水率高 | 吸水剂 | [ | |||
模压成型发泡 | 物料加入模具中;热压、糊化形成厚的糊状物;物料中的水迅速蒸发,糊状物急剧膨胀而发泡;冷却、成型 | 优点:操作简单;孔隙率高;易于控制孔径和形状 缺点:成本较高;制备较厚或较大体积材料时孔径难控制;不适合制备凹陷、侧面斜度等复杂制品 | 平衡水分能力好、杨氏模量高 | 半硬质泡沫,食品储藏、保鲜 | [ |
密度较大、热稳定性好、拉伸强度和抗弯强度高 | 硬质缓冲包装 | [ | |||
拉伸强度高、热导率低 | 保温隔热 | [ | |||
冷冻干燥发泡 | 物料加入模具中;物料低温下快速或缓慢冻结;冷冻干燥,物料中水分子升华;水蒸气逸出发泡 | 优点:操作简单;孔隙连通均匀;细胞结构由冰晶的大小和分布控制;高冻结速率下形成微孔泡沫,低冻结速率形成介孔泡沫 缺点:膨胀率低;孔径不易控制,可能产生片状结构;处理时间长,不适用于所有材料 | 比表面积大、疏水性好、吸油率高 | 吸油剂 | [ |
连续三维网络结构、热导率低 | 保温隔热 | [ | |||
孔径小、孔隙率高、止血、无毒 | 药物输送和止血敷料 | [ |
样品 | R | 表观密度 /g∙cm-3 | 回弹性 /% | 压缩杨氏模量 /MPa | 压缩屈服强度 /MPa |
---|---|---|---|---|---|
向日葵髓芯 | 3.68 | 0.0370 | 67.8 | 11.4 | 0.383 |
玉米秆芯 | 0.77 | 0.0356 | 55.2 | 49.5 | 0.899 |
高粱秆芯 | 0.67 | 0.0370 | 55.1 | 45.9 | 1.32 |
表2 向日葵髓芯、高粱秆和玉米秆芯样品的性能测试数据[39]
样品 | R | 表观密度 /g∙cm-3 | 回弹性 /% | 压缩杨氏模量 /MPa | 压缩屈服强度 /MPa |
---|---|---|---|---|---|
向日葵髓芯 | 3.68 | 0.0370 | 67.8 | 11.4 | 0.383 |
玉米秆芯 | 0.77 | 0.0356 | 55.2 | 49.5 | 0.899 |
高粱秆芯 | 0.67 | 0.0370 | 55.1 | 45.9 | 1.32 |
原料 | 填料 | 发泡剂 | 交联剂 | 成核剂 | 增塑剂 | 各组分作用 | 参考文献 |
---|---|---|---|---|---|---|---|
棕榈酸酯纤维素 | — | 异丁烷 | — | 滑石粉 | 异丁烷 | 棕榈酸酯纤维素具有热塑性,有利于塑化;异丁烷可提高熔体强度;滑石粉可使泡沫的泡孔致密均匀 | [ |
玉米淀粉 | 淀粉酶-镁复合物 | 水 | 锌改性壳聚糖 | — | — | 淀粉酶-镁复合物和锌改性壳聚糖增强淀粉基泡沫的支撑结构,促进大孔前体形成,提高孔隙率和机械强度;合适含水量可提高膨胀率 | [ |
纤维素悬浮液(MFC) | — | 水、超临界CO2 | 聚乙烯醇(PVA) | — | 水 | MFC与PVA基质复合,提高熔体强度,降低结晶度,有利于加工;水作增塑剂,增加PVA链的迁移率,降低熔融温度;合适含水量可提高膨胀率,超临界CO2有效促进成核,防止泡孔产生过程中泡孔塌陷 | [ |
羟丙基玉米淀粉 | 纤维素晶体 | 水 | 甘油和PVA | — | 水 | 挤出密炼中甘油、PVA与羟丙基玉米淀粉交联,形成三维网络结构;纤维素晶体作成核剂,泡孔均匀,孔壁不易坍塌,提高抗压强度和弹性模量;水作增塑剂,增加PVA链的迁移率;合适含水量可提高膨胀率 | [ |
聚乳酸(PLA) | 纸浆纤维 | 异丁烷 | 环氧扩链剂 | 滑石粉 | — | 挤出密炼过程中环氧扩链剂与PLA交联,提高熔体强度;纸浆纤维和异丁烷增大熔体黏度,有利于形成低密度和机械强度高的泡沫;滑石粉使泡沫泡孔致密均匀 | [ |
表3 挤出发泡可生物降解泡沫配方组成及其各组分作用
原料 | 填料 | 发泡剂 | 交联剂 | 成核剂 | 增塑剂 | 各组分作用 | 参考文献 |
---|---|---|---|---|---|---|---|
棕榈酸酯纤维素 | — | 异丁烷 | — | 滑石粉 | 异丁烷 | 棕榈酸酯纤维素具有热塑性,有利于塑化;异丁烷可提高熔体强度;滑石粉可使泡沫的泡孔致密均匀 | [ |
玉米淀粉 | 淀粉酶-镁复合物 | 水 | 锌改性壳聚糖 | — | — | 淀粉酶-镁复合物和锌改性壳聚糖增强淀粉基泡沫的支撑结构,促进大孔前体形成,提高孔隙率和机械强度;合适含水量可提高膨胀率 | [ |
纤维素悬浮液(MFC) | — | 水、超临界CO2 | 聚乙烯醇(PVA) | — | 水 | MFC与PVA基质复合,提高熔体强度,降低结晶度,有利于加工;水作增塑剂,增加PVA链的迁移率,降低熔融温度;合适含水量可提高膨胀率,超临界CO2有效促进成核,防止泡孔产生过程中泡孔塌陷 | [ |
羟丙基玉米淀粉 | 纤维素晶体 | 水 | 甘油和PVA | — | 水 | 挤出密炼中甘油、PVA与羟丙基玉米淀粉交联,形成三维网络结构;纤维素晶体作成核剂,泡孔均匀,孔壁不易坍塌,提高抗压强度和弹性模量;水作增塑剂,增加PVA链的迁移率;合适含水量可提高膨胀率 | [ |
聚乳酸(PLA) | 纸浆纤维 | 异丁烷 | 环氧扩链剂 | 滑石粉 | — | 挤出密炼过程中环氧扩链剂与PLA交联,提高熔体强度;纸浆纤维和异丁烷增大熔体黏度,有利于形成低密度和机械强度高的泡沫;滑石粉使泡沫泡孔致密均匀 | [ |
原料 | 填料 | 发泡剂 | 交联剂 | 增塑剂 | 脱模剂及其他助剂 | 各组分作用 | 参考文献 |
---|---|---|---|---|---|---|---|
淀粉 | 纤维素 | 水 | 柠檬酸 | — | 棕榈蜡作为脱模剂,次亚磷酸钠作为催化剂 | 热压过程中柠檬酸、淀粉、纤维素在次亚磷酸钠作用下交联,提高机械强度和弹性模量;合适含水量可形成均匀泡孔;棕榈蜡有利于脱模 | [ |
木质素(EL) | — | 水 | BCC、二聚体脂肪二胺(priamine) | — | — | 热压阶段BCC、priamine与EL交联、氨甲酰化,形成可裂解动态共价网络,赋予泡沫自修复性和热再加工性;合适含水量可形成均匀泡孔 | [ |
玉米淀粉 | — | 碳酸氢钠、 偶氮二甲酰胺 | 三偏磷酸钠 | 甘油 | 液体石蜡作为脱模剂,丙烯酸甲酯和乙酸乙烯酯作为改性剂 | 热压阶段三偏磷酸钠与淀粉交联,丙烯酸甲酯、乙酸乙烯酯、淀粉接枝共聚,降低结晶度,形成均匀胶体,提高泡沫力学性能,增强韧性;碳酸氢钠、偶氮二甲酰胺受热分解产生泡孔;甘油有利于塑化;液体石蜡有利于脱模 | [ |
淀粉 | 甘蔗渣 | 水 | — | 甘油 | 硬脂酸镁作为脱模剂 | 甘蔗渣和甘油使淀粉具有流变性,防止泡孔崩塌降低吸水能力,提高伸长率;合适含水量可形成均匀泡孔;硬脂酸镁有利于脱模 | [ |
淀粉 | 纤维素、碳酸钙 | 水 | PLA、瓜尔豆胶 | — | 硬脂酸镁用作脱模剂,硅酸镁用作填充剂 | 热压阶段PLA、瓜尔豆胶与淀粉交联,调节黏度,有利于塑化,提高弹性模量;物料中羧基或羟基作用,产生相容界面;硅酸镁作填充剂,有利于提高弯曲强度;合适含水量可形成均匀泡孔;硬脂酸镁有利于脱模 | [ |
玉米芯纤维 | 木薯粉 | 水 | PVA | 山梨醇 | 硬脂酸镁用作脱模剂 | 添加PVA有利于形成坚韧、有弹性的泡沫;山梨醇作增塑剂,提高物料热均质性和防水性,形成均匀泡孔,改善泡沫综合性能;木薯粉提高泡沫抗压强度;合适含水量形成均匀泡孔;硬脂酸镁有利于脱模 | [ |
表4 模压发泡可生物降解泡沫配方组成及其各组分作用
原料 | 填料 | 发泡剂 | 交联剂 | 增塑剂 | 脱模剂及其他助剂 | 各组分作用 | 参考文献 |
---|---|---|---|---|---|---|---|
淀粉 | 纤维素 | 水 | 柠檬酸 | — | 棕榈蜡作为脱模剂,次亚磷酸钠作为催化剂 | 热压过程中柠檬酸、淀粉、纤维素在次亚磷酸钠作用下交联,提高机械强度和弹性模量;合适含水量可形成均匀泡孔;棕榈蜡有利于脱模 | [ |
木质素(EL) | — | 水 | BCC、二聚体脂肪二胺(priamine) | — | — | 热压阶段BCC、priamine与EL交联、氨甲酰化,形成可裂解动态共价网络,赋予泡沫自修复性和热再加工性;合适含水量可形成均匀泡孔 | [ |
玉米淀粉 | — | 碳酸氢钠、 偶氮二甲酰胺 | 三偏磷酸钠 | 甘油 | 液体石蜡作为脱模剂,丙烯酸甲酯和乙酸乙烯酯作为改性剂 | 热压阶段三偏磷酸钠与淀粉交联,丙烯酸甲酯、乙酸乙烯酯、淀粉接枝共聚,降低结晶度,形成均匀胶体,提高泡沫力学性能,增强韧性;碳酸氢钠、偶氮二甲酰胺受热分解产生泡孔;甘油有利于塑化;液体石蜡有利于脱模 | [ |
淀粉 | 甘蔗渣 | 水 | — | 甘油 | 硬脂酸镁作为脱模剂 | 甘蔗渣和甘油使淀粉具有流变性,防止泡孔崩塌降低吸水能力,提高伸长率;合适含水量可形成均匀泡孔;硬脂酸镁有利于脱模 | [ |
淀粉 | 纤维素、碳酸钙 | 水 | PLA、瓜尔豆胶 | — | 硬脂酸镁用作脱模剂,硅酸镁用作填充剂 | 热压阶段PLA、瓜尔豆胶与淀粉交联,调节黏度,有利于塑化,提高弹性模量;物料中羧基或羟基作用,产生相容界面;硅酸镁作填充剂,有利于提高弯曲强度;合适含水量可形成均匀泡孔;硬脂酸镁有利于脱模 | [ |
玉米芯纤维 | 木薯粉 | 水 | PVA | 山梨醇 | 硬脂酸镁用作脱模剂 | 添加PVA有利于形成坚韧、有弹性的泡沫;山梨醇作增塑剂,提高物料热均质性和防水性,形成均匀泡孔,改善泡沫综合性能;木薯粉提高泡沫抗压强度;合适含水量形成均匀泡孔;硬脂酸镁有利于脱模 | [ |
原料 | 发泡剂 | 交联剂 | 各组分作用 | 参考文献 |
---|---|---|---|---|
碱处理的天然木块 | 水 | 甲基三甲氧基硅烷(MTMS) | MTMS对碱预处理木块疏水改性,利于提高回弹率、抗压强度和疏水性;水升华形成微孔泡沫 | [ |
肼基改性纤维素纳米晶(CNC-NHNH2) | 水 | 端醛基聚乙二醇(OHC-PEG-CHO) | CNC-NHNH2与OHC-PEG-CHO交联,形成坚韧的网络孔隙结构,提高泡沫力学强度,吸水后提高弹性模量;水升华形成微孔泡沫 | [ |
木质纤维素 | 水 | 1-烯丙基-3-甲基咪唑氯化物/二甲基亚砜(AmimCl/DMSO)共溶剂 | AmimCl/DMSO降低物料黏度,形成物理交联网络结构,提高机械强度;水升华形成微孔泡沫 | [ |
纤维素纳米纤维(CNF) | 水 | N-羟甲基二甲基膦丙酰胺(MDPA)、1,2,3,4-丁烷四羧酸(BTCA)、次亚磷酸钠(SHP)或PVA、聚磷酸铵(MCAPP) | BTCA上的羧基在SHP作用下与CNF、MDPA上羟基酯化,赋予材料柔韧性和回弹性,水升华形成微孔泡沫或CNF链羟基与PVA链羟基形成氢键,与MCAPP链形成酯键,提高杨氏模量 | [ |
魔芋葡聚糖、马铃薯 淀粉、麦秸秆 | 水 | 明胶 | 添加马铃薯淀粉有利于提高泡沫机械强度;麦秸杆减小泡沫孔径;明胶防止麦秸秆沉降,改善隔热性能;水升华形成微孔泡沫 | [ |
微晶纤维素悬浮液 | 水 | N-(2-氨基乙基)-3-氨基丙基甲基二甲氧基硅烷(AEAPDMS)、氯化钙 | 氯化钙使泡孔不易坍塌;微晶纤维素悬浮液与AEAPDMS接枝产生低收缩率和高比表面积泡沫;水升华形成微孔泡沫 | [ |
表5 冷冻干燥发泡可生物降解泡沫配方组成及其各组分作用
原料 | 发泡剂 | 交联剂 | 各组分作用 | 参考文献 |
---|---|---|---|---|
碱处理的天然木块 | 水 | 甲基三甲氧基硅烷(MTMS) | MTMS对碱预处理木块疏水改性,利于提高回弹率、抗压强度和疏水性;水升华形成微孔泡沫 | [ |
肼基改性纤维素纳米晶(CNC-NHNH2) | 水 | 端醛基聚乙二醇(OHC-PEG-CHO) | CNC-NHNH2与OHC-PEG-CHO交联,形成坚韧的网络孔隙结构,提高泡沫力学强度,吸水后提高弹性模量;水升华形成微孔泡沫 | [ |
木质纤维素 | 水 | 1-烯丙基-3-甲基咪唑氯化物/二甲基亚砜(AmimCl/DMSO)共溶剂 | AmimCl/DMSO降低物料黏度,形成物理交联网络结构,提高机械强度;水升华形成微孔泡沫 | [ |
纤维素纳米纤维(CNF) | 水 | N-羟甲基二甲基膦丙酰胺(MDPA)、1,2,3,4-丁烷四羧酸(BTCA)、次亚磷酸钠(SHP)或PVA、聚磷酸铵(MCAPP) | BTCA上的羧基在SHP作用下与CNF、MDPA上羟基酯化,赋予材料柔韧性和回弹性,水升华形成微孔泡沫或CNF链羟基与PVA链羟基形成氢键,与MCAPP链形成酯键,提高杨氏模量 | [ |
魔芋葡聚糖、马铃薯 淀粉、麦秸秆 | 水 | 明胶 | 添加马铃薯淀粉有利于提高泡沫机械强度;麦秸杆减小泡沫孔径;明胶防止麦秸秆沉降,改善隔热性能;水升华形成微孔泡沫 | [ |
微晶纤维素悬浮液 | 水 | N-(2-氨基乙基)-3-氨基丙基甲基二甲氧基硅烷(AEAPDMS)、氯化钙 | 氯化钙使泡孔不易坍塌;微晶纤维素悬浮液与AEAPDMS接枝产生低收缩率和高比表面积泡沫;水升华形成微孔泡沫 | [ |
1 | MOHANTY A K, MISRA M, HINRICHSEN G. Biofibres, biodegradable polymers and biocomposites: an overview[J]. Macromolecular Materials and Engineering, 2000, 276/277(1): 1-24. |
2 | 鲍园园, 庞少峰, 赵向飞, 等. 生物质秸秆的改性及其发泡材料的应用研究进展[J]. 功能材料, 2021, 52(4): 4071-4082. |
BAO Yuanyuan, PANG Shaofeng, ZHAO Xiangfei, et al. Progress in modification of biomass straw and application of foaming materials[J]. Journal of Functional Materials, 2021, 52(4): 4071-4082. | |
3 | SINHA RAY S, BOUSMINA M. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world[J]. Progress in Materials Science, 2005, 50(8): 962-1079. |
4 | HE Sihan, LIU Chao, CHI Xuewen, et al. Bio-inspired lightweight pulp foams with improved mechanical property and flame retardancy via borate cross-linking[J]. Chemical Engineering Journal, 2019, 371: 34-42. |
5 | LOHTANDER T, HERRALA R, LAAKSONEN P, et al. Lightweight lignocellulosic foams for thermal insulation[J]. Cellulose, 2022, 29(3): 1855-1871. |
6 | ZHANG Huimin, WANG Jilong, XU Guangbiao, et al. Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents[J]. Journal of Hazardous Materials, 2021, 406: 124758. |
7 | CHEN Zehong, ZHUO Hao, HU Yijie, et al. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage[J]. Advanced Functional Materials, 2020, 30(17): 1910292. |
8 | GUO Limin, CHEN Zhilin, Shaoyi LYU, et al. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy[J]. Carbohydrate Polymers, 2018, 179: 333-340. |
9 | WANG Yanbin, SU Qiong, WANG Hongling, et al. Molded environment-friendly flame-retardant foaming material with high strength based on corn starch modified by crosslinking and grafting[J]. Journal of Applied Polymer Science, 2019, 136(11): 47193. |
10 | MIMINI V, KABRELIAN V, FACKLER K, et al. Lignin-based foams as insulation materials: a review[J]. Holzforschung, 2018, 73(1): 117-130. |
11 | LI Peng, ZHU Xiaoyi, KONG Miqiu, et al. Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging[J]. International Journal of Biological Macromolecules, 2021, 183: 222-234. |
12 | HEISE K, KONTTURI E, ALLAHVERDIYEVA Y, et al. Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications[J]. Advanced Materials, 2021, 33(3): e2004349. |
13 | ARAM E, MEHDIPOUR-ATAEI S. A review on the micro- and nanoporous polymeric foams: preparation and properties[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65(7): 358-375. |
14 | 梁双. 玉米秸秆阻燃发泡材料的制备及其在包装行业中的应用[D]. 兰州: 西北民族大学, 2019. |
LIANG Shuang. Preparation of flame retardant foaming materials based on corn straw and its application in packaging industry[D]. Lanzhou: Northwest University for Nationalities, 2019. | |
15 | WANG Sisi, YANG Wenjie, LI Xiping, et al. Preparation of high-expansion open-cell polylactic acid foam with superior oil-water separation performance[J]. International Journal of Biological Macromolecules, 2021, 193: 1059-1067. |
16 | MACHADO C M, BENELLI P, TESSARO I C. Study of interactions between cassava starch and peanut skin on biodegradable foams[J]. International Journal of Biological Macromolecules, 2020, 147: 1343-1353. |
17 | ABE S, TABE H, IJIRI H, et al. Crystal engineering of self-assembled porous protein materials in living cells[J]. ACS Nano, 2017, 11(3): 2410-2419. |
18 | RUBINA M S, ELMANOVICH I V, SHULENINA A V, et al. Chitosan aerogel containing silver nanoparticles: from metal-chitosan powder to porous material[J]. Polymer Testing, 2020, 86: 106481. |
19 | BANERJEE R, RAY S S. Foamability and special applications of microcellular thermoplastic polymers: a review on recent advances and future direction[J]. Macromolecular Materials and Engineering, 2020, 305(10): 2070028. |
20 | JIN Fanlong, ZHAO Miao, PARK Mira, et al. Recent trends of foaming in polymer processing: a review[J]. Polymers, 2019, 11(6): 953. |
21 | SOHN Joo, KIM Hyun, KIM Shin, et al. Biodegradable foam cushions as ecofriendly packaging materials[J]. Sustainability, 2019, 11(6): 1731. |
22 | LI Ran, DU Jinyan, ZHENG Yanmei, et al. Ultra-lightweight cellulose foam material: preparation and properties[J]. Cellulose, 2017, 24(3): 1417-1426. |
23 | WANG Guilong, ZHAO Guoqun, ZHANG Lei, et al. Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding[J]. Chemical Engineering Journal, 2018, 350: 1-11. |
24 | SOYKEABKAEW N, THANOMSILP C, SUWANTONG O. A review: starch-based composite foams[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 246-263. |
25 | ROKKONEN T, WILLBERG-KEYRILÄINEN P, ROPPONEN J, et al. Foamability of cellulose palmitate using various physical blowing agents in the extrusion process[J]. Polymers, 2021, 13(15): 2416. |
26 | HASSAN N A ABU, AHMAD S, CHEN R S, et al. Synergistically enhanced mechanical, combustion and acoustic properties of biopolymer composite foams reinforcement by kenaf fibre[J]. Composites Part A: Applied Science and Manufacturing, 2022, 155: 106826. |
27 | OLUWABUNMI K, D’SOUZA N A, ZHAO Weihuan, et al. Compostable, fully biobased foams using PLA and micro cellulose for zero energy buildings[J]. Scientific Reports, 2020, 10: 17771. |
28 | SPADA J C, JASPER A, TESSARO I C. Biodegradable cassava starch based foams using rice husk waste as macro filler[J]. Waste and Biomass Valorization, 2020, 11(8): 4315-4325. |
29 | JING Zefeng, DING Jichao, ZHANG Tao, et al. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation[J]. Food and Bioproducts Processing, 2019, 115: 134-142. |
30 | KAISANGSRI N, KOWALSKI R J, KERDCHOECHUEN O, et al. Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams[J]. Industrial Crops and Products, 2019, 142: 111810. |
31 | XU Enbo, WU Zhengzong, LONG Jie, et al. Porous starch-based material prepared by bioextrusion in the presence of zinc and amylase-magnesium complex[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9572-9578. |
32 | FAZELI M, KELEY M, BIAZAR E. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers[J]. International Journal of Biological Macromolecules, 2018, 116: 272-280. |
33 | HASSAN M M, TUCKER N, LE GUEN M J. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams[J]. Carbohydrate Polymers, 2020, 230: 115675. |
34 | VARGAS-TORRES A, PALMA-RODRIGUEZ H M, DE J BERRIOS J, et al. Biodegradable baked foam made with chayotextle starch mixed with plantain flour and wood fiber[J]. Journal of Applied Polymer Science, 2017, 134(48): 45565. |
35 | SUN Yan, CHU Youlu, WU Weibing, et al. Nanocellulose-based lightweight porous materials: a review[J]. Carbohydrate Polymers, 2021, 255: 117489. |
36 | ZHOU Ting, CHENG Xudong, PAN Yuelei, et al. Mechanical performance and thermal stability of polyvinyl alcohol-cellulose aerogels by freeze drying[J]. Cellulose, 2019, 26(3): 1747-1755. |
37 | JUNGPRASERTCHAI N, CHUYSINUAN P, EKABUTR P, et al. Freeze-dried carboxymethyl chitosan/starch foam for use as a haemostatic wound dressing[J]. Journal of Polymers and the Environment, 2022, 30(3): 1106-1117. |
38 | YU Zhilong, QIN Bing, MA Zhiyuan, et al. Emerging bioinspired artificial woods[J]. Advanced Materials, 2021, 33(28): 2001086. |
39 | 尹作栋, 潘则林, 王才, 等. 几种天然高分子泡沫体的组成、结构与力学性能[J]. 科学通报, 2007, 52(9): 1075-1079. |
YIN Zuodong, PAN Zelin, WANG Cai, et al. Composition, structure and mechanical properties of several natural polymer foam[J]. Chinese Science Bulletin, 2007, 52(9): 1075-1079. | |
40 | SONG Jianwei, CHEN Chaoji, ZHU Shuze, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228. |
41 | 文甲龙, 陈天影, 孙润仓. 生物质木质素分离和结构研究方法进展[J]. 林业工程学报, 2017, 2(5): 76-84. |
WEN Jialong, CHEN Tianying, SUN Runcang. Research progress on separation and structural analysis of lignin in lignocellulosic biomass[J]. Journal of Forestry Engineering, 2017, 2(5): 76-84. | |
42 | GIBSON L J. Biomechanics of cellular solids[J]. Journal of Biomechanics, 2005, 38(3): 377-399. |
43 | 卿彦, 廖宇, 刘婧祎, 等. 木基储能材料研究新进展[J]. 林业工程学报, 2021, 6(5): 1-13. |
QING Yan, LIAO Yu, LIU Jingyi, et al. Research progress of wood-derived energy storage materials[J]. Journal of Forestry Engineering, 2021, 6(5): 1-13. | |
44 | CHEN Chaoji, SONG Jianwei, CHENG Jian, et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity[J]. ACS Nano, 2020, 14(12): 16723-16734. |
45 | GUAN Hao, CHENG Zhiyong, WANG Xiaoqing. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano, 2018, 12(10): 10365-10373. |
46 | YU Zhilong, YANG Ning, ZHOU Lichuan, et al. Bioinspired polymeric woods[J]. Science Advances, 2018, 4(8): 7223. |
47 | PATTAMAPROM C, WU Chienhui,, CHEN Pohan, et al. Solvent-free one-shot synthesis of thermoplastic polyurethane based on bio-poly(1,3-propylene succinate) glycol with temperature-sensitive shape memory behavior[J]. ACS Omega, 2020, 5(8): 4058-4066. |
48 | SURYAWANSHI Y, SANAP P, WANI V. Advances in the synthesis of non-isocyanate polyurethanes[J]. Polymer Bulletin, 2019, 76(6): 3233-3246. |
49 | ZHAO Wei, LIANG Zhenhua, FENG Zihao, et al. New kind of lignin/polyhydroxyurethane composite: green synthesis, smart properties, promising applications, and good reprocessability and recyclability[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28938-28948. |
50 | XI X D, PIZZI A, GERARDIN C, et al. Preparation and evaluation of glucose based non-isocyanate polyurethane self-blowing rigid foams[J]. Polymers, 2019, 11(11): 1802. |
51 | CHEN Xinyi, LI Jinxing, XI Xuedong, et al. Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy[J]. Polymer Degradation and Stability, 2020, 175: 109121. |
52 | HUANG Jun, TIAN Guoxin, HUANG Peiyan, et al. Flexural performance of sisal fiber reinforced foamed concrete under static and fatigue loading[J]. Materials, 2020, 13(14): 3098. |
53 | GUPTA S, DEY M, JAVAID S, et al. On the design of novel biofoams using lignin, wheat straw, and sugar beet pulp as precursor material[J]. ACS Omega, 2020, 5(28): 17078-17089. |
54 | LI Jiongjiong, ZHANG Aibin, ZHANG Shifeng, et al. Larch tannin-based rigid phenolic foam with high compressive strength, low friability, and low thermal conductivity reinforced by cork powder[J]. Composites Part B: Engineering, 2019, 156: 368-377. |
55 | SUN Hao, CAO Yangfen, WEI Lingjun, et al. Production of biomass fiber packaging material by microwave foaming method[J]. Materials Science Forum, 2018, 916: 115-119. |
56 | LI Dong, WANG Yuhuan, LONG Fen, et al. Solvation-controlled elastification and shape-recovery of cellulose nanocrystal-based aerogels[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1549-1557. |
57 | LÓPEZ DURÁN V, ERLANDSSON J, WÅGBERG L, et al. Novel, cellulose-based, lightweight, wet-resilient materials with tunable porosity, density, and strength[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9951-9957. |
58 | RONG Liduo, LIU Hongchen, WANG Bijia, et al. Enamine approach for versatile and reversible functionalization on cellulose related porous sponges[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9028-9036. |
59 | FERREIRA Elisa S, CRANSTON Emily D, REZENDE Camila A. Naturally hydrophobic foams from lignocellulosic fibers prepared by oven-drying[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8267-8278. |
60 | YIIN Chung Loong, Kok Liang YAP, KU A Zi En, et al. Recent advances in green solvents for lignocellulosic biomass pretreatment: potential of choline chloride (ChCl) based solvents[J]. Bioresource Technology, 2021, 333: 125195. |
61 | CHEN Fengfeng, HUANG Kuan, ZHOU Yan, et al. Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids[J]. Angewandte Chemie International Edition, 2016, 55(25): 7166-7170. |
62 | MUSSANA H, YANG X, TESSIMA M, et al. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system[J]. Industrial Crops and Products, 2018, 113: 225-233. |
63 | CHENG Chao, MA Junchao, WANG Jinhua, et al. Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms[J]. Environmental Pollution, 2019, 255(2): 113321. |
64 | XU Airong, CHEN Lin, GUO Xin, et al. Biodegradable lignocellulosic porous materials: fabrication, characterization and its application in water processing[J]. International Journal of Biological Macromolecules, 2018, 115: 846-852. |
65 | WEI Benxi, CAI Canxin, XU Baoguo, et al. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process[J]. Food Chemistry, 2018, 240: 165-173. |
66 | 苏琼, 王彦斌, 王济乾, 等. 复合改性淀粉发泡材料的制备及阻燃性能研究[J]. 化工新型材料, 2016, 44(8): 96-98. |
SU Qiong, WANG Yanbin, WANG Jiqian, et al. Study on preparation and fire retardant property of composite modified starch foam material[J]. New Chemical Materials, 2016, 44(8): 96-98. | |
67 | DRUEL L, BARDL R, VORWERG W, et al. Starch aerogels: a member of the family of thermal superinsulating materials[J]. Biomacromolecules, 2017, 18(12): 4232-4239. |
68 | ZHAO Na, MARK Lun Howe, ZHU Changwei, et al. Foaming poly(vinyl alcohol)/microfibrillated cellulose composites with CO2 and water as co-blowing agents[J]. Industrial & Engineering Chemistry Research, 2014, 53(30): 11962-11972. |
69 | DUAN Qingfei, ZHU Zhiyi, CHEN Ying, et al. Starch-based foams nucleated and reinforced by polysaccharide-based crystals[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 2169-2179. |
70 | ROKKONEN T, PELTOLA H, SANDQUIST D. Foamability and viscosity behavior of extrusion foamed PLA-pulp fiber biocomposites[J]. Journal of Applied Polymer Science, 2019, 136(41): 48202. |
71 | CRUZ-TIRADO J P, VEJARANO R, TAPIA-BLÁCIDO D R, et al. The addition of sugarcane bagasse and asparagus peel enhances the properties of sweet potato starch foams[J]. Packaging Technology and Science, 2019, 32(5): 227-237. |
72 | MOO-TUN N M, IÑIGUEZ-COVARRUBIAS G, VALADEZ-GONZALEZ A. Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design[J]. Polymer Testing, 2020, 86: 106482. |
73 | SUMARDIONO S, PUDJIHASTUTI I, AMALIA R, et al. Characteristics of biodegradable foam (bio-foam) made from cassava flour and corn fiber[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1053(1): 012082. |
74 | HUANG Yajun, ZHOU Ting, HE Song, et al. Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus[J]. Applied Surface Science, 2019, 497: 143775. |
75 | WANG Yixin, WU Kao, XIAO Man, et al. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw[J]. Carbohydrate Polymers, 2018, 197: 284-291. |
76 | WANG Xiaoyu, ZHANG Yang, WANG Siqun, et al. Synthesis and characterization of amine-modified spherical nanocellulose aerogels[J]. Journal of Materials Science, 2018, 53(18): 13304-13315. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[3] | 刘淑琼, 吴芳芳, 刘瑞来, 许祯毅. 聚乳酸/壳聚糖/氧化石墨烯载阿司匹林仿生支架的制备与表征[J]. 化工进展, 2023, 42(8): 4362-4371. |
[4] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[5] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[6] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[7] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[8] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[9] | 吕学东, 罗发亮, 林海涛, 宋丹青, 刘义, 牛瑞雪, 郑柳春. 聚丁二酸丁二醇酯的合成工艺及气体阻隔性最新进展[J]. 化工进展, 2023, 42(5): 2546-2554. |
[10] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[11] | 多佳, 姚国栋, 王英霁, 曾旭, 金滨滨. 改性Au-TiO2光降解废水中诺氟沙星的影响[J]. 化工进展, 2023, 42(2): 624-630. |
[12] | 章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500. |
[13] | 张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214. |
[14] | 刘海成, 孟无霜, 黄哲, 尤雨, 花瑞琪, 曹梦茹. WO3/BiOCl0.7I0.3光催化剂的制备及其光催化降解机理[J]. 化工进展, 2023, 42(1): 255-264. |
[15] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |