化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4362-4371.DOI: 10.16085/j.issn.1000-6613.2022-1772
收稿日期:
2022-09-22
修回日期:
2023-01-30
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
刘淑琼
作者简介:
刘淑琼(1985—),女,博士,副教授,研究方向为生物医用复合材料。E-mail: liushuqiong123456@163.com。
基金资助:
LIU Shuqiong(), WU Fangfang, LIU Ruilai, XU Zhenyi
Received:
2022-09-22
Revised:
2023-01-30
Online:
2023-08-15
Published:
2023-09-19
Contact:
LIU Shuqiong
摘要:
单纯的支架仿生结构在调节细胞行为和骨组织再生方面有一定的局限性,因此将仿生支架与纳米给药相结合成为一种提高支架功能的有效解决方案。本文采用相分离法成功制备了不同ASA(阿司匹林)含量的三维多孔PLA/CS/GO/ASA载药仿生复合支架。ASA的添加破坏了PLA球晶结构的形成,但对仿生微、纳米纤维结构的影响不大;实验范围内随ASA含量的增加,载药支架亲水性能有所改善,但孔隙率呈先减后增的趋势,均大于80%;溶血率和血小板黏附实验表明,控制ASA含量在5%以下可获得具有良好血液相容性的支架材料;体外细胞增殖实验则表明所制备的载药支架具有细胞相容性;低ASA含量可以促进MC3T3-E1细胞增殖,高含量的ASA对MC3T3-E1细胞有一定的抑制作用;药物缓释实验表明PLA/CS/GO/ASA载药仿生复合支架具有良好的ASA缓释性能。
中图分类号:
刘淑琼, 吴芳芳, 刘瑞来, 许祯毅. 聚乳酸/壳聚糖/氧化石墨烯载阿司匹林仿生支架的制备与表征[J]. 化工进展, 2023, 42(8): 4362-4371.
LIU Shuqiong, WU Fangfang, LIU Ruilai, XU Zhenyi. Preparation and characterization of a novel polylactic acid/chitosan/graphene oxide/aspirin drug-loaded biomimetic composite scaffold[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4362-4371.
1 | XU Tao, YAO Qingqing, MISZUK Jacob M, et al. Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells[J]. Colloids and Surfaces B: Biointerfaces, 2018, 171: 31-39. |
2 | WANG Xuejun, SONG Guojun, LOU Tao. Fabrication and characterization of nano composite scaffold of poly(l-lactic acid)/hydroxyapatite[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(1): 183-188. |
3 | KHADEMHOSSEINI A. Drug delivery and tissue engineering[J]. Chem. Eng. Prog., 2006, 102: 38. |
4 | Nilüfer ÇAKIR-ÖZKAN, Sinan EĞRI, BEKAR Esengül, et al. The use of sequential VEGF- and BMP2-releasing biodegradable scaffolds in rabbit mandibular defects[J]. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 2017, 75(1): 221.e1-221221.e14. |
5 | ZHOU Nian, LI Qi, LIN Xin, et al. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells[J]. Cell and Tissue Research, 2016, 366(1): 101-111. |
6 | VISHNUBALAJI Radhakrishnan, YUE Shijun, ALFAYEZ Musaad, et al. Bone morphogenetic protein 2 (BMP2) induces growth suppression and enhances chemosensitivity of human colon cancer cells[J]. Cancer Cell International, 2016, 16: 77. |
7 | XING Jinfeng, ZHENG Meiling, DUAN Xuanming. Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery[J]. Chemical Society Reviews, 2015, 44(15): 5031-5039. |
8 | LEE Jin Woo, CHO Dong-Woo. 3D Printing technology over a drug delivery for tissue engineering[J]. Current Pharmaceutical Design, 2015, 21(12): 1606-1617. |
9 | YAO Qingqing, LIU Yangxi, SELVARATNAM Balaranjan, et al. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering[J]. Journal of Controlled Release, 2018, 279: 69-78. |
10 | MAO Zhou, LI Jialiang, HUANG Wenjie, et al. Preparation of poly(lactic acid)/graphene oxide nanofiber membranes with different structures by electrospinning for drug delivery[J]. RSC Advances, 2018, 8(30): 16619-16625. |
11 | GUO Hailing, WANG Yunlong, HUANG Yiping, et al. A GO@PLA@HA composite microcapsule: Its preparation and multistage and controlled drug release[J]. European Journal of Inorganic Chemistry, 2017, 2017(27): 3312-3321. |
12 | JI Mingxiang, LI Han, GUO Hailin, et al. A novel porous aspirin-loaded (GO/CTS-HA) n nanocomposite films: Synthesis and multifunction for bone tissue engineering[J]. Carbohydrate Polymers, 2016, 153: 124-132. |
13 | DI Li, KERNS Edward Harvel. Drug-like properties: Concepts, structure design and methods from ADME to toxicity optimization[M]. 2nd ed. Amsterdam: Elsevier, 2015: 28. |
14 | FLORES Fernanda C, ROSSO Roberta S, CRUZ Letícia, et al. An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment[J]. European Journal of Pharmaceutical Sciences, 2017, 100: 56-63. |
15 | DUNCAN Ruth. Polymer conjugates as anticancer nanomedicines[J]. Nature Reviews Cancer, 2006, 6(9): 688-701. |
16 | LU Tingli, LI Yuhui, CHEN Tao. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering[J]. International Journal of Nanomedicine, 2013, 8: 337-350. |
17 | LIU Xiaodong, SHENG Yujing, WU Dongliang, et al. Synthesis of PAMAM-GO as new nanofiller to enhance the crystallization properties of polylactic acid[J]. Materials Letters, 2019, 235: 27-30. |
18 | WANG Weizhong, NIE Wei, ZHOU Xiaojun, et al. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique[J]. Acta Biomaterialia, 2018, 79: 168-181. |
19 | BLAKENEY Bryan A, TAMBRALLI Ajay, ANDERSON Joel M, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold[J]. Biomaterials, 2011, 32(6): 1583-1590. |
20 | CONOSCENTI Gioacchino, SCHNEIDER Tobias, STOELZEL Katharina, et al. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size[J]. Materials Science and Engineering C, 2017, 80: 449-459. |
21 | YANG Zhijun, SUN Chen, WANG Liang, et al. Novel poly(l-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity[J]. Journal of Colloid and Interface Science, 2017, 507: 344-352. |
22 | LAPPE Svenja, MULAC Dennis, LANGER Klaus. Polymeric nanoparticles-influence of the glass transition temperature on drug release[J]. International Journal of Pharmaceutics, 2017, 517(1/2): 338-347. |
23 | CAMPOS João M, FERRARIA Ana M, BOTELHO DO REGO Ana M, et al. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films[J]. Materials Chemistry and Physics, 2015, 166: 122-132. |
24 | RASOULZADEHZALI Monireh, NAMAZI Hassan. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin[J]. International Journal of Biological Macromolecules, 2018, 116: 54-63. |
25 | 王博蔚, 马瑞, 吴凡, 等. 氧化石墨烯-海藻酸钠-壳聚糖复合支架的制备及表征[J]. 高等学校化学学报, 2020, 41(9): 2099-2106. |
WANG Bowei, MA Rui, WU Fan, et al. Preparation and characterization of graphene oxide-sodium alginate-chitosan composite scaffold[J]. Chemical Journal of Chinese Universities, 2020, 41(9): 2099-2106. | |
26 | LIU Shuqiong, ZHENG Yuying, WU Zhenzeng, et al. Preparation and characterization of aspirin-loaded polylactic acid/graphene oxide biomimetic nanofibrous scaffolds[J]. Polymer, 2020, 211: 123093. |
27 | MAJIDI Hoomaan JOZ, BABAEI Amir, Sina KAZEMI-PASARVI, et al. Tuning polylactic acid scaffolds for tissue engineering purposes by incorporating graphene oxide-chitosan nano-hybrids[J]. Polymers for Advanced Technologies, 2021, 32(4): 1654-1666. |
28 | REN Liping, PAN Shuang, LI Haiqing, et al. Effects of aspirin-loaded graphene oxide coating of a titanium surface on proliferation and osteogenic differentiation of MC3T3-E1 cells[J]. Scientific Reports, 2018, 8: 15143. |
29 | CHIN Kok-Yong. A review on the relationship between aspirin and bone health[J]. Journal of Osteoporosis, 2017, 2017: 3710959. |
30 | LIU Yi, WANG Lei, KIKUIRI Takashi, et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-Α[J]. Nature Medicine, 2011, 17(12): 1594-1601. |
31 | 刘淑琼, 刘瑞来, 饶瑞晔. 阿司匹林对聚己内酯载体材料的结构和缓释性能的影响[J]. 材料研究学报, 2018, 32(12): 913-920. |
LIU Shuqiong, LIU Ruilai, RAO Ruiye. Effect of aspirin on structure of polycaprolactone carried materials and controlled-release performance[J]. Chinese Journal of Materials Research, 2018, 32(12): 913-920. | |
32 | YIN Guibo, ZHANG Youzhu, WANG Shudong, et al. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2010, 93(1): 158-163. |
33 | HAGHJOOY JAVANMARD Shaghayegh, ANARI Jamal, ZARGAR KHARAZI Anousheh, et al. In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers[J]. Journal of Biomaterials Applications, 2016, 31(3): 438-449. |
34 | ALIPPILAKKOTTE Shebi, KUMAR Sanjeev, SREEJITH Lisa. Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 771-782. |
35 | GONG Ming, ZHAO Qian, DAI Liming, et al. Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties[J]. Journal of Asian Ceramic Societies, 2017, 5(2): 160-168. |
36 | HAJJI Sawssen, Ben KHEDIR Sameh, Ibtissem HAMZA-MNIF, et al. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects[J]. Biochimica et Biophysica Acta (BBA)- General Subjects, 2019, 1863(1): 241-254. |
37 | LEE Cheng-Hung, LIN Yuhuang, CHANG Shang-Hung, et al. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery[J]. International Journal of Nanomedicine, 2014, 9: 311-326. |
38 | SIVASHANKARI P R, PRABAHARAN M. Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering[J]. International Journal of Biological Macromolecules, 2020, 146: 222-231. |
39 | MILLERET Vincent, HEFTI Thomas, HALL Heike, et al. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation[J]. Acta Biomaterialia, 2012, 8(12): 4349-4356. |
40 | XIE Jiao, HU Jia, FANG Liang, et al. Facile fabrication and biological properties of super-hydrophobic coating on magnesium alloy used as potential implant materials[J]. Surface and Coatings Technology, 2020, 384: 125223. |
41 | ASLANI Saba, KABIRI Mahboubeh, KEHTARI Mousa, et al. Vascular tissue engineering: Fabrication and characterization of acetylsalicylic acid-loaded electrospun scaffolds coated with amniotic membrane lysate[J]. Journal of Cellular Physiology, 2019, 234(9): 16080-16096. |
42 | CAO Yu, XIONG Jimin, MEI Shenghui, et al. Aspirin promotes bone marrow mesenchymal stem cell-based calvarial bone regeneration in mini swine[J]. Stem Cell Research & Therapy, 2015, 6: 210. |
43 | 牛二龙, 张毅, 李阳, 等. 小剂量阿司匹林对去势大鼠骨髓基质干细胞成骨分化的影响[J]. 中国矫形外科杂志, 2013, 21(12): 1228-1234. |
NIU Erlong, ZHANG Yi, LI Yang, et al. Effect of aspirin on the osteogenic differentiation of bone marrow stromal cells inovariectomized rats[J]. Orthopedic Journal of China, 2013, 21(12): 1228-1234. |
[1] | 朱添宇, 孙琳, 任超, 罗雄麟. 基于全周期持续节能的换热网络滑动窗口分析与裕量缓释优化控制[J]. 化工进展, 2023, 42(3): 1195-1205. |
[2] | 李梓泳, 陈龙, 马文丹, 周红军, 周新华. PDMDAAC改性玉米醇溶蛋白负载阿维菌素纳米颗粒的制备与性能[J]. 化工进展, 2022, 41(4): 2068-2074. |
[3] | 易聪华, 徐青荷, 王淼, 杨东杰. pH敏感性生物基纳米载药粒子的研究进展[J]. 化工进展, 2021, 40(6): 3411-3420. |
[4] | 尹微虹, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 具有梯级释药性能的核壳型双重载药微球[J]. 化工进展, 2021, 40(2): 998-1007. |
[5] | 刘其海, 谢婉婷, 贾振宇, 朱小花, 王荣辉. 壳聚糖胶囊材料的制备及其缓释性能[J]. 化工进展, 2021, 40(1): 339-345. |
[6] | 储李娜,敖先权,陈前林,郭妤,曹阳. 改性聚乙烯醇添加酒糟制备缓释肥包膜材料的表征及其性能[J]. 化工进展, 2020, 39(2): 627-634. |
[7] | 孙琳, 杨明达, 罗雄麟. 基于持续节能的换热网络缓释优化[J]. 化工进展, 2020, 39(10): 3941-3948. |
[8] | 李桂娟,夏伟,罗海希,程桂茹. 纳米纤维素晶须-壳聚糖/聚乙烯醇复合膜性能与细胞相容性[J]. 化工进展, 2020, 39(1): 356-364. |
[9] | 赵海田,李旭东,曹凤芹,倪艳,姚磊. 基于壳聚糖纳米粒子载药体系的制备与应用研究进展[J]. 化工进展, 2019, 38(11): 5057-5065. |
[10] | 孙青, 罗威, 张俭, 盛嘉伟. 海藻酸钙/埃洛石载药微球的制备与缓释盐酸二甲双胍性能[J]. 化工进展, 2018, 37(08): 3138-3145. |
[11] | 徐华, 林粤顺, 周红军, 周艺宇, 陈喜, 周新华. 毒死蜱/乙基纤维素微胶囊的制备及其缓释性能[J]. 化工进展, 2017, 36(12): 4622-4627. |
[12] | 戈明亮, 汤微. Pickering乳液在药物载体制备方面的研究进展[J]. 化工进展, 2017, 36(12): 4586-4591. |
[13] | 龚圣, 陈燕, 韩文强, 周新华, 徐华, 陈铧耀, 吴伟超. 茶树油/脲醛树脂缓释微胶囊的制备[J]. 化工进展, 2017, 36(05): 1862-1867. |
[14] | 陈铧耀, 周新华, 周红军, 杨晓红, 徐华, 戴修纯. 毒死蜱/壳聚糖改性凹凸棒土/海藻酸钠微球的制备与缓释性能[J]. 化工进展, 2017, 36(03): 1033-1040. |
[15] | 李静涵, 魏振平. 亲水性小分子药物缓释微球制备方法的研究进展[J]. 化工进展, 2016, 35(01): 204-209. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |