化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4372-4384.DOI: 10.16085/j.issn.1000-6613.2022-1821
收稿日期:
2022-09-29
修回日期:
2022-11-10
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
董航
作者简介:
赵健(1986—),男,博士,副教授,博士生导师,研究方向为油气储运系统优化与节能降耗技术。E-mail: zhaojian_nepu@163.com。
基金资助:
ZHAO Jian1(), ZHUO Zewen1, DONG Hang1(), GAO Wenjian2
Received:
2022-09-29
Revised:
2022-11-10
Online:
2023-08-15
Published:
2023-09-19
Contact:
DONG Hang
摘要:
基于流变-原位显微同步测量技术和改进的复合型光源,构建了对含蜡原油及其乳状液体系微观结构观测的新方法。实际观测结果表明:新构建的显微观测方法观测到的蜡晶数量比偏光显微镜观测到的蜡晶数量高出70%,并且在识别微小尺寸蜡晶方面具有更高精度,与常规偏光显微观测结果相比,识别出的1~3μm范围内的蜡晶数量要多150%,刻画的1~2μm范围内蜡晶分形维数要高15%,使得新构建的显微观测方法对恶化初始冷却温度下形成的致密型蜡晶具有更为突出的观测优势。此外,新观测方法识别出的恶化和较优初冷温度下的蜡晶边缘间距差值更大,约是常规显微观测结果的2倍,更能体现出不同初冷温度下的蜡晶结构差异,与原油流变性的关联性也更显著。动态剪切条件下的蜡晶微观形貌受流场影响显著,随剪切速率增大,蜡晶形态和排列与流场的协同性增强。相比于离线观测,原位显微观测获得的蜡晶微观形貌与原油流变性的关联性更显著,更有利于从微观尺度阐释含蜡原油的流变性机制。新观测方法可以实现对原油乳状液中蜡晶和乳化水滴的同时观测,在识别两者相互作用和形成聚集结构方面具有更好的识别质量。
中图分类号:
赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384.
ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384.
性质 | 数值 | ||
---|---|---|---|
呼伦贝尔原油 | 大庆原油 | 塔木察格原油 | |
20℃时密度/kg·m-3 | 832.6 | 855.4 | 877.3 |
析蜡点/℃ | 47.0 | 53.5 | 55.5 |
凝点/℃ | 18.0 | 29.0 | 31.0 |
饱和烃质量分数/% | 65.8 | 68.9 | 63.0 |
芳香烃质量分数/% | 18.0 | 19.1 | 14.85 |
胶质质量分数/% | 11.8 | 8.8 | 18.0 |
沥青质质量分数/% | 4.4 | 3.2 | 4.15 |
表1 3种原油基本物性
性质 | 数值 | ||
---|---|---|---|
呼伦贝尔原油 | 大庆原油 | 塔木察格原油 | |
20℃时密度/kg·m-3 | 832.6 | 855.4 | 877.3 |
析蜡点/℃ | 47.0 | 53.5 | 55.5 |
凝点/℃ | 18.0 | 29.0 | 31.0 |
饱和烃质量分数/% | 65.8 | 68.9 | 63.0 |
芳香烃质量分数/% | 18.0 | 19.1 | 14.85 |
胶质质量分数/% | 11.8 | 8.8 | 18.0 |
沥青质质量分数/% | 4.4 | 3.2 | 4.15 |
油样 | 恶化初冷温度/℃ | 较优初冷温度/℃ |
---|---|---|
呼伦贝尔原油 | 60 | 70 |
大庆原油 | 70 | 80 |
塔木察格原油 | 70 | 80 |
表2 不同实验油样的恶化和较优初冷温度
油样 | 恶化初冷温度/℃ | 较优初冷温度/℃ |
---|---|---|
呼伦贝尔原油 | 60 | 70 |
大庆原油 | 70 | 80 |
塔木察格原油 | 70 | 80 |
项目 | 温度/℃ | 数量 | 与流场方向夹角/(°) | 分形维数 |
---|---|---|---|---|
剪切过程中 | 40 | 0.5492 | 0.7143 | 0.6725 |
剪切过程中 | 30 | 0.8316 | 0.6835 | 0.5838 |
剪切速率突降后 | 40 | 0.5328 | 0.7036 | 0.6674 |
剪切速率突降后 | 30 | 0.7274 | 0.6218 | 0.5406 |
表3 不同温度下蜡晶微观特征参数与原油流变性的灰色关联度
项目 | 温度/℃ | 数量 | 与流场方向夹角/(°) | 分形维数 |
---|---|---|---|---|
剪切过程中 | 40 | 0.5492 | 0.7143 | 0.6725 |
剪切过程中 | 30 | 0.8316 | 0.6835 | 0.5838 |
剪切速率突降后 | 40 | 0.5328 | 0.7036 | 0.6674 |
剪切速率突降后 | 30 | 0.7274 | 0.6218 | 0.5406 |
1 | 罗佐县. 我国原油对外依存度下降并非拐点出现[J]. 中国石化, 2022(3): 68. |
LUO Zuoxian. The decline in China’s dependence on foreign crude oil is not an inflection point[J]. Sinopec Monthly, 2022(3): 68. | |
2 | ZHAO Jian, ZHAO Weiqiang, DONG Hang, et al. New approach for the in situ microscopic observation of wax crystals in waxy crude oil during quiescent and dynamic cooling[J]. ACS Omega, 2020, 5(20): 11491-11506. |
3 | ZHAO Jian, XI Xiangrui, DONG Hang, et al. Rheo-microscopy in situ synchronous measurement of shearing thinning behaviors of waxy crude oil[J]. Fuel, 2022, 323: 124427. |
4 | ZHAO Jian, XI Xiangrui, DONG Hang, et al. In situ observation of microscopic motions and the structure dynamic transformation of wax crystals in waxy crude oil subjected to shear[J]. New Journal of Chemistry, 2021, 45(37): 17522-17543. |
5 | 李鸿英, 贾治渊, 韩善鹏, 等. 高含水含蜡原油的粘壁特性试验[J]. 油气储运, 2020, 39(8): 898-906. |
LI Hongying, JIA Zhiyuan, HAN Shanpeng, et al. Test on wall-adhering behavior of high water-cut waxy crude oil[J]. Oil & Gas Storage and Transportation, 2020, 39(8): 898-906. | |
6 | 黄启玉, 李瑜仙, 张劲军. 普适性结蜡模型研究[J]. 石油学报, 2008, 29(3): 459-462. |
HUANG Qiyu, LI Yuxian, ZHANG Jinjun. Unified wax deposition model[J]. Acta Petrolei Sinica, 2008, 29(3): 459-462. | |
7 | 黄启玉, 张劲军, 高学峰, 等. 大庆原油蜡沉积规律研究[J]. 石油学报, 2006, 27(4): 125-129. |
HUANG Qiyu, ZHANG Jinjun, GAO Xuefeng, et al. Study on wax deposition of Daqing crude oil[J]. Acta Petrolei Sinica, 2006, 27(4): 125-129. | |
8 | PAIVA F L, CALADO V M A, MARCHESINI F H. On the use of modulated temperature differential scanning calorimetry to assess wax crystallization in crude oils[J]. Fuel, 2017, 202: 216-226. |
9 | AHMADI KHOSHOOEI M, FAZLOLLAHI F, MAHAM Y, et al. A review on the application of differential scanning calorimetry (DSC) to petroleum products[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(5): 3485-3510. |
10 | LORGE O, DJABOUROV M, BRUCY F. Crystallisation and gelation of waxy crude oils under flowing conditions[J]. Revue De L’Institut Français Du Pétrole, 1997, 52(2): 235-239. |
11 | SILVA J A L, COUTINHO J A P. Dynamic rheological analysis of the gelation behaviour of waxy crude oils[J]. Rheologica Acta, 2004, 43(5): 433-441. |
12 | 李会鹏, 沈本贤, 顾宇辉. 柴油蜡晶的理论形态预测与显微实际形态的比较[J]. 石油学报(石油加工), 2006, 22(2): 27-33. |
LI Huipeng, SHEN Benxian, GU Yuhui. Comparison of theoretical prediction with practical morphology of wax in diesel fuel[J]. Acta Petrolei Sinica(Petroleum Proeessing Section), 2006, 22(2): 27-33. | |
13 | 李会鹏, 周晓龙, 沈本贤. 柴油内蜡晶的组成与结构[J]. 华东理工大学学报(自然科学版), 2006, 32(3): 254-258. |
LI H P, ZHOU X L, SHEN B X. Composition and structure of wax in diesel[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2006, 32(3): 254-258. | |
14 | SUN Minwei, NADERI Khosrow, FIROOZABADI Abbas. Effect of crystal modifiers and dispersants on paraffin-wax particles in petroleum fluids[J]. SPE Journal, 2019, 24(1): 32-43. |
15 | KANÉ M, DJABOUROV M, VOLLE J L, et al. Correction of biased time domain NMR estimates of the solid content of partially crystallized systems[J]. Applied Magnetic Resonance, 2002, 22(3): 335-346. |
16 | JIANG Chen, ZHAO Kun, FU Cheng, et al. Characterization of morphology and structure of wax crystals in waxy crude oils by terahertz time-domain spectroscopy[J]. Energy & Fuels, 2017, 31(2): 1416-1421. |
17 | MEIGHANI H M, GHOTBI C, BEHBAHANI T J, et al. A new investigation of wax precipitation in Iranian crude oils: Experimental method based on FTIR spectroscopy and theoretical predictions using PC-SAFT model[J]. Journal of Molecular Liquids, 2018(249): 970-979. |
18 | RUWOLDT J, HUMBORSTAD SØRLAND G, SIMON S, et al. Inhibitor-wax interactions and PPD effect on wax crystallization: New approaches for GC/MS and NMR, and comparison with DSC, CPM, and rheometry[J]. Journal of Petroleum Science and Engineering, 2019, 177: 53-68. |
19 | HAJ-SHAFIEI S, WORKMAN B, TRIFKOVIC M, et al. In-situ monitoring of paraffin wax crystal formation and growth[J]. Crystal Growth & Design, 2019, 19(5): 2830-2837. |
20 | YI Shize, ZHANG Jinjun. Relationship between waxy crude oil composition and change in the morphology and structure of wax crystals induced by pour-point-depressant beneficiation[J]. Energy & Fuels, 2011, 25(4): 1686-1696. |
21 | BAI Chengyu, ZHANG Jinjun. Effect of carbon number distribution of wax on the yield stress of waxy oil gels[J]. Industrial & Engineering Chemistry Research, 2013, 52(7): 2732-2739. |
22 | 孟凡怡, 杜胜男, 冯宪明, 等. 复配菌对含蜡原油含蜡量及其黏度作用分析[J]. 辽宁石油化工大学学报, 2020, 40(6): 14-20. |
MENG Fanyi, DU Shengnan, FENG Xianming, et al. Effect of compound bacteria on wax content and viscosity of waxy crude oil[J]. Journal of Liaoning Shihua University, 2020, 40(6): 14-20. | |
23 | YAO Bo, LI Chuanxian, YANG Fei, et al. Organically modified nano-clay facilitates pour point depressing activity of polyoctadecylacrylate[J]. Fuel, 2016, 166: 96-105. |
24 | YAO Bo, LI Chuanxian, YANG Fei . et al. Ethylene-vinyl acetate copolymer and resin-stabilized asphaltenes synergistically improve the flow behavior of model waxy oils. 1.Effect of wax content and the synergistic mechanism[J]. Energy Fuels, 2018, 32(2): 1567-1578. |
25 | YANG Fei, YAO Bo, LI Chuanxian, et al. Performance improvement of the ethylene-vinyl acetate copolymer (EVA) pour point depressant by small dosages of the polymethylsilsesquioxane (PMSQ) microsphere: An experimental study[J]. Fuel, 2017, 207: 204-213. |
26 | PETTER RØNNINGSEN H. Rheological behaviour of gelled, waxy North Sea crude oils[J]. Journal of Petroleum Science and Engineering, 1992, 7(3/4): 177-213. |
27 | WEBBER R M. Yield properties of wax crystal structures formed in lubricant mineral oils[J]. Industrial & Engineering Chemistry Research, 2001, 40(1): 195-203. |
28 | 夏惠芳, 张劲军. 低速剪切影响加剂原油低温流动性机理研究[J]. 油气储运, 2001, 20(2): 32-34. |
XIA Huifang, ZHANG Jinjun. Study on the influence of low rate shear on the low-temperature flow properties of the PPD-treated crude oil[J]. Oil & Gas Storage and Transportation, 2001, 20(2): 32-34. | |
29 | 黄启玉, 王蕾. 微观液滴分布对含蜡原油乳状液流变性的影响[J]. 石油学报, 2013, 34(4): 765-774. |
HUANG Qiyu, WANG Lei. Effect of droplet distribution on rheological properties of water-in-oil emulsion in waxy crude oils[J]. Acta Petrolei Sinica, 2013, 34(4): 765-774. | |
30 | MIKULA R J. Emulsion characterization[M]// SCHRAMM L L. Emulsions: Fundamentals and Applications in the Petroleum Industry[M]// Advances in Chemistry. ACS, 1992: 79-129. |
31 | 孙广宇, 张劲军. 含蜡原油乳状液凝胶结构裂降行为模型[J]. 油气储运, 2017, 36(1): 49-58. |
SUN Guangyu, ZHANG Jinjun. A model used to describe the structural breakdown behavior of waxy crude oil emulsion gel[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 49-58. | |
32 | LI Si, HUANG Qiyu, WANG Lei, et al. Research on viscoelastic properties of water in waxy crude oil emulsion gels with the effect of droplet size and distribution[J]. The Canadian Journal of Chemical Engineering, 2015, 93(12): 2233-2244. |
33 | FAN Kaifeng, LI Si, LI Rongbin. Micro-mechanism analysis of the rheological properties of water-in-waxy-crude-oil emulsion under pipe flow[J]. Journal of Dispersion Science and Technology, 2022, 43(1): 114-125. |
34 | 刘扬, 诸葛祥龙, 王志华, 等. 含蜡原油乳化机制影响下的蜡晶形态及聚集行为[J]. 油气储运, 2019, 38(8): 877-884. |
LIU Yang, ZHUGE Xianglong, WANG Zhihua, et al. Effect of emulsification mechanism on morphology and aggregation behavior of wax crystals in waxy crude oil[J]. Oil & Gas Storage and Transportation, 2019, 38(8): 877-884. | |
35 | 史博会, 张也, 柳扬, 等. 流动体系油包水乳状液微观特性试验研究与定量表征[J]. 油气储运, 2018, 37(2): 183-189. |
SHI Bohui, ZHANG Ye, LIU Yang, et al. Experimental research and quantitative characterization on the microscopic characteristics of water-in-oil emulsion in flow systems[J]. Oil & Gas Storage and Transportation, 2018, 37(2): 183-189. | |
36 | HOU L, ZHANG J. Effects of thermal and shear history on the viscoelasticity of Daqing crude oil[J]. Petroleum Science and Technology, 2007, 25(5): 601-614. |
37 | LI Hongying, ZHANG Jinjun, SONG Chaofan, et al. The influence of the heating temperature on the yield stress and pour point of waxy crude oils[J]. Journal of Petroleum Science and Engineering, 2015, 135: 476-483. |
38 | 董航. 初冷温度对含蜡原油流变性及蜡晶动力学行为的影响规律研究[D]. 大庆: 东北石油大学, 2021. |
DONG Hang. Effect of initial cooling temperature on waxy crude oil rheological properties and wax crystals dynamic behaviors[D]. Daqing: Northeast Petroleum University, 2021. | |
39 | LI Yuanhao, ZHAO Jian, DONG Hang, et al. The role of shearing effect in the evolution of the microscopic behavior of wax crystals[J]. New Journal of Chemistry, 2021, 45(23): 10418-10431. |
[1] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[2] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[3] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[4] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[5] | 常炜, 史秋兰, 赵正阳, 王瑞婷, 王志福, 赵俭波. 高内相乳液法制备聚丙烯酰胺多孔水凝胶及应用[J]. 化工进展, 2022, 41(7): 3832-3839. |
[6] | 张辛铖, 何林, 隋红, 李鑫钢. 重质油包水乳液破乳过程及降黏强化机制[J]. 化工进展, 2022, 41(7): 3534-3544. |
[7] | 胡瑶瑶, 魏铭, 李博申, 董月林, 董群峰, 刘传奇. 硅/巯基复合改性光固化WPUA涂料制备及其性能[J]. 化工进展, 2022, 41(6): 3186-3193. |
[8] | 陆少锋, 崔杉杉, 师文钊, 李苏松, 谢艳, 杨乾诚. 交联水性聚氨酯固-固相变材料的制备及性能[J]. 化工进展, 2022, 41(5): 2574-2581. |
[9] | 龚鑫, 刘小冬, 温福山, 师楠, 刘东. 中间相炭微球乳化-聚合法制备及电化学性能[J]. 化工进展, 2022, 41(5): 2379-2388. |
[10] | 刘竞, 郑新国, 李铁军, 王财平, 赵彦旭, 李颖, 楼梁伟, 沈伟. 可再分散乳化沥青粉末改性水泥砂浆的力学性能和微观形貌[J]. 化工进展, 2022, 41(4): 2015-2021. |
[11] | 罗明昀, 凌子夜, 方晓明, 张正国. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. |
[12] | 鲁朝金, 任官伟, 吕福炜, 董霄, 白志山. 国产硫酸法烷基化精制系统中脱酸技术开发与应用[J]. 化工进展, 2022, 41(3): 1430-1439. |
[13] | 韩芬, 杨娜, 孙永利, 姜斌, 肖晓明, 张吕鸿. 玻璃纤维聚结器脱除油中乳化水[J]. 化工进展, 2022, 41(12): 6723-6732. |
[14] | 山林娜, 杨振生, 燕国飞, 李春利, 李浩, 王志英. 基于多巴胺亲水改性下Janus膜的制备及其油水乳液分离[J]. 化工进展, 2022, 41(12): 6500-6510. |
[15] | 许瑞雪, 程凤茹, 马静, 邓玉凤, 赵俭波. 双重Pickering乳液法制备聚丙烯酰胺多孔微球及应用[J]. 化工进展, 2022, 41(12): 6549-6556. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |