化工进展 ›› 2023, Vol. 42 ›› Issue (8): 4385-4397.DOI: 10.16085/j.issn.1000-6613.2022-1746
收稿日期:
2022-09-19
修回日期:
2022-12-26
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
姜晶
作者简介:
姜晶(1986—),男,博士,讲师,研究方向为环境污染控制化学。E-mail:jiangjing@usts.edu.cn。
基金资助:
JIANG Jing1,2(), CHEN Xiaoyu1,2, ZHANG Ruiyan1, SHENG Guangyao1
Received:
2022-09-19
Revised:
2022-12-26
Online:
2023-08-15
Published:
2023-09-19
Contact:
JIANG Jing
摘要:
生物炭具有原料来源广、制备成本低、比表面积大等优点而成为一种有潜力的吸附剂,是固体废弃物资源化利用的一个重要方向,但吸附能力有限会限制其在环境修复的实际应用。通过不同方法对生物炭进行改性能够优化其理化性质,从而增强生物炭对污染物的去除能力。近年来,在生物炭上负载不同形态锰形成的载锰生物炭因在环境修复中表现出良好的应用潜力而备受关注。本文重点归纳和总结了载锰生物炭制备方法及其在去除环境中有机污染物和重金属方面的应用和机理研究,并介绍了其在高级氧化、污泥处理、低温选择性催化还原氮氧化物及再生利用等方面的应用。结合研究现状,提出未来载锰生物炭在制备、应用及应用后对环境影响方面的研究方向,以期为载锰生物炭在环境修复中更广泛应用提供参考。
中图分类号:
姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397.
JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397.
制备方法 | 优点 | 存在的问题 |
---|---|---|
前体浸渍热解法 | 操作简便、设备简单 | 能耗高、排放温室气体 |
水热法 | 能耗低、控制水热条件负载不同形态的Mn | 部分过程有废气产生、水热设备要求高 |
沉淀法 | 适合批量生产、能够制备纳米级别的复合材料 | 沉淀反应难以控制锰氧化物形状、产生污泥 |
表1 载锰生物炭制备方法
制备方法 | 优点 | 存在的问题 |
---|---|---|
前体浸渍热解法 | 操作简便、设备简单 | 能耗高、排放温室气体 |
水热法 | 能耗低、控制水热条件负载不同形态的Mn | 部分过程有废气产生、水热设备要求高 |
沉淀法 | 适合批量生产、能够制备纳米级别的复合材料 | 沉淀反应难以控制锰氧化物形状、产生污泥 |
原料 | 制备方法 | 负载的锰 | 比表面积/m2·g-1 | 平均孔径/nm | 锰质量分数/% | 氧质量分数/% | 参考文献 |
---|---|---|---|---|---|---|---|
椰壳 | 前体浸渍热解法 | Mn3O4、Mn2O3 | 391.23(426.65)④ | 2.99(2.45) | 6.81① | 30.01①(9.4) | [ |
玉米秸秆 | 前体浸渍热解法 | Mn3O4、Mn2O3 | — | — | 9.56② | 18.64② | [ |
玉米秸秆 | 前体浸渍热解法 | MnO x | 23.8(61) | 8.92(23.7) | 3.05③ | 7.95③(5.16) | [ |
玉米秸秆 | 前体浸渍热解法 | MnO x | 3.18(60.97) | — | 7.41 | 10.90(5.16) | [ |
洛氏松木材 | 前体浸渍热解法 | 方锰矿 | 463.1(209.6) | — | 4.19③ | 14.58③(11.19) | [ |
美洲商陆 | 前体浸渍热解法 | MnO2 | 20.233 | — | 7.61② | 21.91③ | [ |
美洲商陆 | 前体浸渍热解法 | MnO x | 11.94 | 16.45 | — | — | [ |
鸢尾 | 前体浸渍热解法 | Mn2O3 | 76.31 | — | — | — | [ |
稻壳 | 水热法 | 花状δ-MnO2 | — | — | — | — | [ |
稻壳 | 水热法 | 海胆状α-MnO2 | — | — | — | — | [ |
树木锯末 | 水热法 | MnO2纳米棒 | 613.8(550) | 4.19(20.28) | — | — | [ |
裙带菜 | 水热法 | 花状δ-MnO2 | 177.5(23.11) | — | — | — | [ |
海藻 | 沉淀法 | δ-MnO2 | 63.7(23.5) | 9.21(23.5) | 6.1② | — | [ |
橘子皮 | 沉淀法 | 球状MnO2 | 273.25(165.01) | 2.08(2.54) | — | — | [ |
花生 | 沉淀法 | γ-MnO2 | 223.60(551.9) | 7.63(2.84) | 31.2② | 34.2② | [ |
花生 | 沉淀法 | HMO⑤ | 3.57(2.99) | 13.8(15.1) | — | — | [ |
花生 | 沉淀法 | HMO | 513.4(176.3) | 4.21(2.07) | — | — | [ |
葡萄茎 | 沉淀法 | AMO⑥ | 171(72) | — | — | — | [ |
油菜 | 沉淀法 | AMO | 13(235.96) | — | — | — | [ |
表2 生物炭负载锰前后比表面积、平均孔径、锰含量和氧含量变化
原料 | 制备方法 | 负载的锰 | 比表面积/m2·g-1 | 平均孔径/nm | 锰质量分数/% | 氧质量分数/% | 参考文献 |
---|---|---|---|---|---|---|---|
椰壳 | 前体浸渍热解法 | Mn3O4、Mn2O3 | 391.23(426.65)④ | 2.99(2.45) | 6.81① | 30.01①(9.4) | [ |
玉米秸秆 | 前体浸渍热解法 | Mn3O4、Mn2O3 | — | — | 9.56② | 18.64② | [ |
玉米秸秆 | 前体浸渍热解法 | MnO x | 23.8(61) | 8.92(23.7) | 3.05③ | 7.95③(5.16) | [ |
玉米秸秆 | 前体浸渍热解法 | MnO x | 3.18(60.97) | — | 7.41 | 10.90(5.16) | [ |
洛氏松木材 | 前体浸渍热解法 | 方锰矿 | 463.1(209.6) | — | 4.19③ | 14.58③(11.19) | [ |
美洲商陆 | 前体浸渍热解法 | MnO2 | 20.233 | — | 7.61② | 21.91③ | [ |
美洲商陆 | 前体浸渍热解法 | MnO x | 11.94 | 16.45 | — | — | [ |
鸢尾 | 前体浸渍热解法 | Mn2O3 | 76.31 | — | — | — | [ |
稻壳 | 水热法 | 花状δ-MnO2 | — | — | — | — | [ |
稻壳 | 水热法 | 海胆状α-MnO2 | — | — | — | — | [ |
树木锯末 | 水热法 | MnO2纳米棒 | 613.8(550) | 4.19(20.28) | — | — | [ |
裙带菜 | 水热法 | 花状δ-MnO2 | 177.5(23.11) | — | — | — | [ |
海藻 | 沉淀法 | δ-MnO2 | 63.7(23.5) | 9.21(23.5) | 6.1② | — | [ |
橘子皮 | 沉淀法 | 球状MnO2 | 273.25(165.01) | 2.08(2.54) | — | — | [ |
花生 | 沉淀法 | γ-MnO2 | 223.60(551.9) | 7.63(2.84) | 31.2② | 34.2② | [ |
花生 | 沉淀法 | HMO⑤ | 3.57(2.99) | 13.8(15.1) | — | — | [ |
花生 | 沉淀法 | HMO | 513.4(176.3) | 4.21(2.07) | — | — | [ |
葡萄茎 | 沉淀法 | AMO⑥ | 171(72) | — | — | — | [ |
油菜 | 沉淀法 | AMO | 13(235.96) | — | — | — | [ |
种类 | 生物炭原料 | 制备方法 | 目标污染物 | 吸附条件(温度,pH) | 去除效果/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
芳香族化合物 | 玉米秸秆 | 沉淀法 | 邻苯二甲酸二正丁酯 | T=25℃,pH=7 | 10.1192 | [ |
芳香族化合物 | 香蕉皮 | 前体浸渍热解法 | 苯甲酸 | T=25℃,pH=4 | 68.213 | [ |
抗生素 | 玉米秸秆 | 沉淀法 | 土霉素 | T=25℃,pH=7 | 39.882 | [ |
抗生素 | 竹柳枝条 | 沉淀法 | 土霉素 | T=25℃,pH=5 | 360.50 | [ |
抗生素 | 高粱秸秆 | 前体浸渍热解法 | 四环素 | T=25℃,pH=7 | 736 | [ |
抗生素 | 中药药渣 | 沉淀法 | 四环素 | T=35℃,pH=3 | 131.49 | [ |
抗生素 | 花生壳 | 沉淀法 | 盐酸多西环素 | T=25℃,pH=3 | 101.49 | [ |
抗生素 | 稻壳 | 沉淀法 | 四环素 | T=25℃,pH=7 | 24.69 | [ |
抗生素 | 稻壳 | 沉淀法 | 多西环素 | T=25℃,pH=7 | 27.29 | [ |
抗生素 | 马铃薯 | 前体浸渍热解法 | 诺氟沙星 | T=35℃,pH=3 | 6.94 | [ |
抗生素 | 马铃薯 | 前体浸渍热解法 | 环丙沙星 | T=35℃,pH=3 | 8.37 | [ |
抗生素 | 马铃薯 | 前体浸渍热解法 | 恩诺沙星 | T=35℃,pH=3 | 7.19 | [ |
染料 | 木质素 | 前体浸渍热解法 | 甲基蓝 | T=25℃,pH=11 | 248.96 | [ |
染料 | 凤凰花植物 | 沉淀法 | 刚果红 | T=25℃,pH=5.8 | 117.647 | [ |
表3 载锰生物炭对有机污染物的去除
种类 | 生物炭原料 | 制备方法 | 目标污染物 | 吸附条件(温度,pH) | 去除效果/mg·g-1 | 参考文献 |
---|---|---|---|---|---|---|
芳香族化合物 | 玉米秸秆 | 沉淀法 | 邻苯二甲酸二正丁酯 | T=25℃,pH=7 | 10.1192 | [ |
芳香族化合物 | 香蕉皮 | 前体浸渍热解法 | 苯甲酸 | T=25℃,pH=4 | 68.213 | [ |
抗生素 | 玉米秸秆 | 沉淀法 | 土霉素 | T=25℃,pH=7 | 39.882 | [ |
抗生素 | 竹柳枝条 | 沉淀法 | 土霉素 | T=25℃,pH=5 | 360.50 | [ |
抗生素 | 高粱秸秆 | 前体浸渍热解法 | 四环素 | T=25℃,pH=7 | 736 | [ |
抗生素 | 中药药渣 | 沉淀法 | 四环素 | T=35℃,pH=3 | 131.49 | [ |
抗生素 | 花生壳 | 沉淀法 | 盐酸多西环素 | T=25℃,pH=3 | 101.49 | [ |
抗生素 | 稻壳 | 沉淀法 | 四环素 | T=25℃,pH=7 | 24.69 | [ |
抗生素 | 稻壳 | 沉淀法 | 多西环素 | T=25℃,pH=7 | 27.29 | [ |
抗生素 | 马铃薯 | 前体浸渍热解法 | 诺氟沙星 | T=35℃,pH=3 | 6.94 | [ |
抗生素 | 马铃薯 | 前体浸渍热解法 | 环丙沙星 | T=35℃,pH=3 | 8.37 | [ |
抗生素 | 马铃薯 | 前体浸渍热解法 | 恩诺沙星 | T=35℃,pH=3 | 7.19 | [ |
染料 | 木质素 | 前体浸渍热解法 | 甲基蓝 | T=25℃,pH=11 | 248.96 | [ |
染料 | 凤凰花植物 | 沉淀法 | 刚果红 | T=25℃,pH=5.8 | 117.647 | [ |
生物炭原料 | 制备方法 | 处理物 | 吸附条件(温度,pH) | 最大吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
玉米秸秆 | 前体浸渍热解法 | Cu(Ⅱ) | T=25℃,pH=6 | 160.3 | [ |
裙带菜 | 水热法 | Cu(Ⅱ) | T=25℃,pH=5.5 | 154 | [ |
花生壳 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH=5 | 24.43 | [ |
花生壳 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH=5 | 67.9 | [ |
花生壳 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH=5 | 225 | [ |
花生壳 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH=5 | 112 | [ |
小米糠 | 水热法 | Cd(Ⅱ) | T=25℃,pH=5 | 139.16 | [ |
玉米秸秆 | 前体浸渍热解法 | Cd(Ⅱ) | T=25℃,pH=5 | 191.94 | [ |
玉米秸秆 | 水热法 | Cr(Ⅵ) | T=35℃,pH=5~6 | 121.95 | [ |
棕榈仁饼 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH=7 | 18.60 | [ |
棕榈仁饼 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH=7 | 49.64 | [ |
棕榈仁饼 | 沉淀法 | Cr(Ⅲ) | T=25℃,pH=7 | 19.92 | [ |
水葫芦 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH>6.5 | 151.43 | [ |
水葫芦 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH>6.5 | 351.37 | [ |
水葫芦 | 沉淀法 | Cu(Ⅱ) | T=25℃,pH>6.5 | 103.91 | [ |
水葫芦 | 沉淀法 | Zn(Ⅱ) | T=25℃,pH>6.5 | 68.36 | [ |
棕榈仁饼 | 前体浸渍热解法 | Zn(Ⅱ) | T=30℃,pH=7 | 22.38 | [ |
稻壳 | 前体浸渍热解法 | Pb(Ⅱ) | T=25℃,pH=5 | 86.5 | [ |
稻草 | 水热法 | Pb(Ⅱ) | T=20℃,pH=5 | 305 | [ |
花生壳 | 沉淀法 | Sb(Ⅲ) | T=45℃,pH=5 | 248 | [ |
油菜籽 | 沉淀法 | Sb(Ⅲ) | T=25℃,pH=2 | 0.94 | [ |
油菜籽 | 沉淀法 | Sb(Ⅴ) | T=25℃,pH=2 | 0.73 | [ |
蘑菇 | 沉淀法 | Sb(Ⅲ) | T=25℃,pH=2 | 64.12 | [ |
玉米秸秆 | 前体浸渍热解法 | As(Ⅲ) | T=25℃,pH=7 | 14.3618 | [ |
玉米秸秆 | 沉淀法 | As(Ⅲ) | T=25℃,pH=7 | 49.8 | [ |
玉米秸秆 | 沉淀法 | As(Ⅴ) | T=25℃,pH=7 | 37.2 | [ |
稻壳 | 沉淀法 | As(Ⅲ) | T=25℃,pH=7 | 1.88 | [ |
稻壳 | 沉淀法 | As(Ⅴ) | T=25℃,pH=7 | 2.16 | [ |
表4 载锰生物炭对重金属的吸附
生物炭原料 | 制备方法 | 处理物 | 吸附条件(温度,pH) | 最大吸附量/mg·g-1 | 参考文献 |
---|---|---|---|---|---|
玉米秸秆 | 前体浸渍热解法 | Cu(Ⅱ) | T=25℃,pH=6 | 160.3 | [ |
裙带菜 | 水热法 | Cu(Ⅱ) | T=25℃,pH=5.5 | 154 | [ |
花生壳 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH=5 | 24.43 | [ |
花生壳 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH=5 | 67.9 | [ |
花生壳 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH=5 | 225 | [ |
花生壳 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH=5 | 112 | [ |
小米糠 | 水热法 | Cd(Ⅱ) | T=25℃,pH=5 | 139.16 | [ |
玉米秸秆 | 前体浸渍热解法 | Cd(Ⅱ) | T=25℃,pH=5 | 191.94 | [ |
玉米秸秆 | 水热法 | Cr(Ⅵ) | T=35℃,pH=5~6 | 121.95 | [ |
棕榈仁饼 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH=7 | 18.60 | [ |
棕榈仁饼 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH=7 | 49.64 | [ |
棕榈仁饼 | 沉淀法 | Cr(Ⅲ) | T=25℃,pH=7 | 19.92 | [ |
水葫芦 | 沉淀法 | Cd(Ⅱ) | T=25℃,pH>6.5 | 151.43 | [ |
水葫芦 | 沉淀法 | Pb(Ⅱ) | T=25℃,pH>6.5 | 351.37 | [ |
水葫芦 | 沉淀法 | Cu(Ⅱ) | T=25℃,pH>6.5 | 103.91 | [ |
水葫芦 | 沉淀法 | Zn(Ⅱ) | T=25℃,pH>6.5 | 68.36 | [ |
棕榈仁饼 | 前体浸渍热解法 | Zn(Ⅱ) | T=30℃,pH=7 | 22.38 | [ |
稻壳 | 前体浸渍热解法 | Pb(Ⅱ) | T=25℃,pH=5 | 86.5 | [ |
稻草 | 水热法 | Pb(Ⅱ) | T=20℃,pH=5 | 305 | [ |
花生壳 | 沉淀法 | Sb(Ⅲ) | T=45℃,pH=5 | 248 | [ |
油菜籽 | 沉淀法 | Sb(Ⅲ) | T=25℃,pH=2 | 0.94 | [ |
油菜籽 | 沉淀法 | Sb(Ⅴ) | T=25℃,pH=2 | 0.73 | [ |
蘑菇 | 沉淀法 | Sb(Ⅲ) | T=25℃,pH=2 | 64.12 | [ |
玉米秸秆 | 前体浸渍热解法 | As(Ⅲ) | T=25℃,pH=7 | 14.3618 | [ |
玉米秸秆 | 沉淀法 | As(Ⅲ) | T=25℃,pH=7 | 49.8 | [ |
玉米秸秆 | 沉淀法 | As(Ⅴ) | T=25℃,pH=7 | 37.2 | [ |
稻壳 | 沉淀法 | As(Ⅲ) | T=25℃,pH=7 | 1.88 | [ |
稻壳 | 沉淀法 | As(Ⅴ) | T=25℃,pH=7 | 2.16 | [ |
生物炭原料 | 制备方法 | 氧化剂 | 处理物 | 反应条件(温度,pH) | 去除率/% | 参考文献 |
---|---|---|---|---|---|---|
稻壳 | 水热法 | H2O2 | 双酚A | T=25℃,pH=7 | 100 | [ |
凤凰花植物 | 沉淀法 | H2O2 | 刚果红 | T=25℃,pH=5.8 | 100 | [ |
玉米秸秆 | 前体浸渍热解法 | Na2S2O8 | 双酚A | T=25℃,pH=6.5 | 100 | [ |
竹子 | 前体浸渍热解法 | Na2S2O8 | 四环素 | T=25℃,pH=7 | 93 | [ |
柚子皮 | 水热法 | K2S2O8 | 4-氯苯酚 | T=25℃,pH=7 | 100 | [ |
稻壳 | 沉淀法 | Na2S2O8 | 4-氯-3-甲基苯酚 | T=25℃,pH=7 | 100 | [ |
污泥 | 前体浸渍热解法 | Na2S2O8 | 金橙G | T=20℃,pH=6 | 97.91 | [ |
玉米秸秆 | 前体浸渍热解法 | KIO4 | 土霉素 | T=25℃,pH=3 | 97.5 | [ |
商业生物炭 | 沉淀法 | O3 | 阿特拉津 | T=25℃,pH=7 | 83 | [ |
表5 载锰生物炭催化氧化降解有机污染物
生物炭原料 | 制备方法 | 氧化剂 | 处理物 | 反应条件(温度,pH) | 去除率/% | 参考文献 |
---|---|---|---|---|---|---|
稻壳 | 水热法 | H2O2 | 双酚A | T=25℃,pH=7 | 100 | [ |
凤凰花植物 | 沉淀法 | H2O2 | 刚果红 | T=25℃,pH=5.8 | 100 | [ |
玉米秸秆 | 前体浸渍热解法 | Na2S2O8 | 双酚A | T=25℃,pH=6.5 | 100 | [ |
竹子 | 前体浸渍热解法 | Na2S2O8 | 四环素 | T=25℃,pH=7 | 93 | [ |
柚子皮 | 水热法 | K2S2O8 | 4-氯苯酚 | T=25℃,pH=7 | 100 | [ |
稻壳 | 沉淀法 | Na2S2O8 | 4-氯-3-甲基苯酚 | T=25℃,pH=7 | 100 | [ |
污泥 | 前体浸渍热解法 | Na2S2O8 | 金橙G | T=20℃,pH=6 | 97.91 | [ |
玉米秸秆 | 前体浸渍热解法 | KIO4 | 土霉素 | T=25℃,pH=3 | 97.5 | [ |
商业生物炭 | 沉淀法 | O3 | 阿特拉津 | T=25℃,pH=7 | 83 | [ |
64 | JIA X C, ZHOU J W, LIU J, et al. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar[J]. Science of the Total Environment, 2020, 724: 138158. |
65 | MAO W J, WU P, ZHANG Y Q, et al. Manganese oxide-modified biochar derived from discarded mushroom-stick for the removal of Sb(Ⅲ) from aqueous solution[J]. Environmental Science and Pollution Research, 2022, 29(32): 49322-49334. |
66 | YU Z H, ZHOU L, HUANG Y F, et al. Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil[J]. Journal of Environmental Management, 2015, 163: 155-162. |
67 | ZHANG B, HAN L F, SUN K, et al. Loading with micro-nanosized α-MnO2 efficiently promotes the removal of arsenite and arsenate by biochar derived from maize straw waste: Dual role of deep oxidation and adsorption[J]. Science of the Total Environment, 2022, 807(part 3): 150994. |
68 | CUONG D V, WU P C, CHEN L I, et al. Active MnO2/biochar composite for efficient As(Ⅲ) removal: Insight into the mechanisms of redox transformation and adsorption[J]. Water Research, 2021, 188: 116495. |
69 | CHEN H P, ZHANG W W, YANG X P, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707. |
70 | HO S H, ZHU S S, CHANG J S. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal[J]. Bioresource Technology, 2017, 246: 123-134. |
71 | GAVRILESCU M. Enhancing phytoremediation of soils polluted with heavy metals[J]. Current Opinion in Biotechnology, 2022, 74: 21-31. |
72 | 于志红, 谢丽坤, 刘爽, 等. 生物炭-锰氧化物复合材料对红壤吸附铜特性的影响[J]. 生态环境学报, 2014, 23(5): 897-903. |
YU Zhihong, XIE Likun, LIU Shuang, et al. Effects of biochar-manganese oxides composite on adsorption characteristics of Cu in red soil[J]. Ecology and Environmental Sciences, 2014, 23(5): 897-903. | |
73 | 吕宏虹, 张慧, 刘颖, 等. MnO x /生物炭复合材料对土壤重金属的固化效果及其机理研究[J].环境化学, 2021, 40(9): 2704-2714. |
Honghong LYU, ZHANG Hui, LIU Ying, et al. Immobilization of heavy metals in contaminated soils using MnO x /biochar composites[J]. Environmental Chemistry, 2021, 40(9): 2704-2714. | |
74 | 孙彤, 付宇童, 李可, 等. 锰基改性生物炭对弱碱性Cd污染土壤团聚体结构以及Cd含量特征的影响[J]. 环境科学, 2020, 41(7): 3426-3433. |
SUN Tong, FU Yutong, LI Ke, et al. Effect of Mn-modified biochar on the characteristics of aggregate structure and the content of Cd in weakly alkaline Cd-contaminated soil[J]. Environmental Science, 2020, 41(7): 3426-3433. | |
75 | LUO J M, LUO X B, CRITTENDEN J, et al. Removal of antimonite [Sb(Ⅲ)] and antimonate [Sb(Ⅴ)] from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science & Technology, 2015, 49(18): 11115-11124. |
76 | YIN L W, LIU L J, LIN S, et al. Synthesis and characterization of nanoscale Zero-Valent Iron (nZVI) as an adsorbent for the simultaneous removal of As(Ⅲ) and As(Ⅴ) from groundwater[J]. Journal of Water Process Engineering, 2022, 47: 102677. |
77 | YU Z H, QIU W W, WANG Fet al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar[J]. Chemosphere, 2017, 168: 341-349. |
78 | YANG Z, WANG Z W, LIANG G W, et al. Catalyst bridging-mediated electron transfer for nonradical degradation of bisphenol A via natural manganese ore-cornstalk biochar composite activated peroxymonosulfate[J]. Chemical Engineering Journal, 2021, 426: 131777. |
79 | HUANG D L, ZHANG Q, ZHANG C, et al. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123532. |
80 | ZHOU H, ZHU X Y, CHEN B L. Magnetic biochar supported α-MnO2 nanorod for adsorption enhanced degradation of 4-chlorophenol via activation of peroxydisulfate[J]. Science of the Total Environment, 2020, 724: 138278. |
81 | LIU T, CUI K P, CHEN Y H, et al. Removal of chlorophenols in the aquatic environment by activation of peroxymonosulfate with nMnO x @ Biochar hybrid composites: Performance and mechanism[J]. Chemosphere, 2021, 283: 131188. |
82 | FAN Z X, ZHANG Q, LI M, et al. Activation of persulfate by manganese oxide-modified sludge-derived biochar to degrade Orange G in aqueous solution[J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 70-79. |
83 | FANG G G, LI J L, ZHANG C, et al. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar[J]. Environmental Pollution, 2022, 300: 118939. |
84 | TIAN S Q, QI J Y, WANG Y P, et al. Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar[J]. Water Research, 2021, 193: 116860. |
1 | CAI Y F, ZHU M M, MENG X Y, et al. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review[J]. Bioresource Technology, 2022, 351: 126924. |
2 | TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: A review[J]. Bioresource Technology, 2016, 212: 318-333. |
3 | YANG X, ZHANG S Q, JU M, et al. Preparation and modification of biochar materials and their application in soil remediation[J]. Applied Sciences, 2019, 9(7): 1365. |
4 | TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85. |
5 | YAO Y, GAO B, CHEN J J, et al. Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer[J]. Environmental Science & Technology, 2013, 47(15): 8700-8708. |
6 | AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99: 19-33. |
7 | 王申宛,郑晓燕,校导, 等. 生物炭的制备、改性及其在环境修复中应用的研究进展[J]. 化工进展, 2020, 39(S2): 352-361. |
WANG Shenwan, ZHENG Xiaoyan, XIAO Dao, et al. Research progress of production, modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361. | |
8 | ISLAM M A, MORTON D W, JOHNSON B B, et al. Manganese oxides and their application to metal ion and contaminant removal from wastewater[J]. Journal of Water Process Engineering, 2018, 26: 264-280. |
9 | WANG H Q, YANG G F, LI Q Y, et al. Porous nano-MnO2: Large scale synthesis via a facile quick-redox procedure and application in a supercapacitor[J]. New Journal of Chemistry, 2011, 35(2): 469-475. |
10 | HUANG J Z, ZHONG S F, DAI Y F, et al. Effect of MnO2 phase structure on the oxidative reactivity toward bisphenol A degradation[J]. Environmental Science & Technology, 2018, 52(19): 11309-11318. |
11 | KOMÁREK M, VANĚK A, ETTLER V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review[J]. Environmental Pollution, 2013, 172: 9-22. |
12 | ODNOVOLOVA A M, SOFRONOV D S, BRYLEVA E Y, et al. Synthesis and properties of MnO(OH) particles[J]. Russian Journal of Applied Chemistry, 2015, 88(9): 1440-1445. |
13 | ZHU S M, XIAO P Y, WANG X, et al. Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides[J]. Journal of Hazardous Materials, 2022, 427: 127938. |
14 | DU J K, XIAO G F, XI Y X, et al. Periodate activation with manganese oxides for sulfanilamide degradation[J]. Water Research, 2020, 169: 115278. |
15 | 刘思佳. 生物炭负载二氧化锰对水中强力霉素的去除及其机理研究[D]. 长沙: 湖南大学, 2019. |
LIU Sijia. Removal of doxycycline hydrochloride from water by MnO x -loaded biochar[D]. Changsha: Hunan University, 2019. | |
16 | WANG M C, SHENG G D, QIU Y P. A novel manganese-oxide/biochar composite for efficient removal of lead(Ⅱ) from aqueous solutions[J]. International Journal of Environmental Science and Technology, 2015, 12(5): 1719-1726. |
17 | SHAHEEN S M, NATASHA, MOSA A, et al. Manganese oxide-modified biochar: Production, characterization and applications for the removal of pollutants from aqueous environments-a review[J]. Bioresource Technology, 2022, 346: 126581. |
18 | ZHU Y, FAN W H, ZHANG K, et al. Nano-manganese oxides-modified biochar for efficient chelated copper citrate removal from water by oxidation-assisted adsorption process[J]. Science of the Total Environment, 2020, 709: 136154. |
19 | 石文, 周雪, 陈国和. 生物炭-锰氧化物复合材料吸附铕(Ⅲ)的性能研究[J]. 绍兴文理学院学报(自然科学), 2021, 41(3): 52-58. |
SHI Wen, ZHOU Xue, CHEN Guohe. On adsorption performance of biochar-manganese oxide composite for Eu (Ⅲ)[J]. Journal of Shaoxing University(Natural Science), 2021, 41(3): 52-58. | |
20 | SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnO x -loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal, 2014, 242: 36-42. |
21 | 于志红, 黄一帆, 廉菲, 等. 生物炭-锰氧化物复合材料吸附砷(Ⅲ)的性能研究[J]. 农业环境科学学报, 2015, 34(1): 155-161. |
YU Zhihong, HUANG Yifan, LIAN Fei, et al. Adsorption of arsenic(Ⅲ) on biochar-manganese oxide composites[J]. Journal of Agro-Environment Science, 2015, 34(1): 155-161. | |
22 | WANG S S, GAO B, LI Y C, et al. Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead[J]. Bioresource Technology, 2015, 181: 13-17. |
23 | YANG Z, HU W Y, YAO B, et al. A novel manganese-rich pokeweed biochar for highly efficient adsorption of heavy metals from wastewater: Performance, mechanisms, and potential risk analysis[J]. Processes, 2021, 9(7): 1209. |
24 | WU P, CUI P X, ZHANG Y, et al. Unraveling the molecular mechanisms of Cd sorption onto MnO x -loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana [J]. Journal of Hazardous Materials, 2022, 423: 127157. |
25 | 牛慧斌, 顾彦, 张常安, 等. 富Mn鸢尾生物炭的制备及在类Fenton体系中的应用[J]. 高等学校化学学报, 2019, 40(12): 2598-2605. |
NIU Huibin, GU Yan, ZHANG Changan, et al. Preparation of biochar with Mn enriched in iris and its application in Fenton-like system[J]. Chemical Journal of Chinese Universities, 2019, 40(12): 2598-2605. | |
26 | JUNG K W, LEE S Y, LEE Y J, et al. Ultrasound-assisted heterogeneous Fenton-like process for bisphenol A removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts[J]. Ultrasonics Sonochemistry, 2019, 57: 22-28. |
27 | NIRMALADEVI S, BOOPATHIRAJA R, KANDASAMY S K, et al. Wood based biochar supported MnO2 nanorods for high energy asymmetric supercapacitor applications[J]. Surfaces and Interfaces, 2021, 27: 101548. |
28 | JUNG K W, LEE S Y, LEE Y J. Hydrothermal synthesis of hierarchically structured birnessite-type MnO2/biochar composites for the adsorptive removal of Cu(Ⅱ) from aqueous media[J]. Bioresource Technology, 2018, 260: 204-212. |
29 | WANG B L, ZHENG J L, LI Y Y, et al. Fabrication of δ-MnO2-modified algal biochar for efficient removal of U(Ⅵ) from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105625. |
30 | DAI Y, PENG H, FAN J L, et al. Removal of uranium using MnO2/orange peel biochar composite prepared by activation and in-situ deposit in a single step[J]. Biomass and Bioenergy, 2020, 142: 105772. |
31 | 林慧琪. 纳米二氧化锰材料催化氧化甲醛性能研究[D]. 合肥: 合肥工业大学, 2018. |
85 | LI J H, ZHANG M, YE Z Y, et al. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge[J]. Journal of Environmental Sciences, 2019, 76: 267-277. |
86 | ZHOU S X, LI Y, JIA P Y, et al. The co-addition of biochar and manganese ore promotes nitrous oxide reduction but favors methane emission in sewage sludge composting[J]. Journal of Cleaner Production, 2022, 339: 130759. |
87 | RAJA S, ESHWAR D, NATARAJAN S, et al. Biochar supported manganese based catalyst for low-temperature selective catalytic reduction of nitric oxide[J]. Clean Technologies and Environmental Policy, 2023, 25(4): 1109-1118. |
88 | GONG Z, WANG B D, CHEN W H, et al. Waste straw derived Mn-doped carbon/mesoporous silica catalyst for enhanced low-temperature SCR of NO[J]. Waste Management, 2021, 136: 28-35. |
89 | LIU L, WANG B D, YAO X J, et al. Highly efficient MnO x /biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO[J]. Fuel, 2021, 283: 119336. |
90 | LI Y P, LIU Y Q, LIU Y H, et al. Modification of sludge biochar by MnO2 to degrade methylene blue: Synergistic catalysis and degradation mechanisms[J]. Journal of Water Process Engineering, 2022, 48: 102864. |
31 | LIN Huiqi. Study on formaldehyde catalytic performance of nano manganese dioxide composites[D]. Hefei: Hefei University of Technology, 2018. |
32 | WAN S L, WU J Y, ZHOU S S, et al. Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism[J]. Science of the Total Environment, 2018, 616/617: 1298-1306. |
33 | WAN S L, QIU L, TANG G, et al. Ultrafast sequestration of cadmium and lead from water by manganese oxide supported on a macro-mesoporous biochar[J]. Chemical Engineering Journal, 2020, 387: 124095. |
34 | TRAKAL L, MICHÁLKOVÁ Z, BEESLEY L, et al. AMOchar: Amorphous manganese oxide coating of biochar improves its efficiency at removing metal(loid)s from aqueous solutions[J]. Science of the Total Environment, 2018, 625: 71-78. |
35 | OUŘEDNÍČEK P, HUDCOVÁ B, TRAKAL L, et al. Synthesis of modified amorphous manganese oxide using low-cost sugars and biochars: Material characterization and metal(loid) sorption properties[J]. Science of the Total Environment, 2019, 670: 1159-1169. |
36 | IMRAN M, IQBAL M M, IQBAL J, et al. Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic(As)from water: Modeling, thermodynamics and reusability[J]. Journal of Hazardous Materials, 2021, 401: 123338. |
37 | ZHOU L, ZHU X F, CHI T Y, et al. Reutilization of manganese enriched biochar derived from Phytolacca acinosa Roxb. residue after phytoremediation for lead and tetracycline removal[J]. Bioresource Technology, 2022, 345: 126546. |
38 | SUPRIYA B S, NAGARAJA P, BYRAPPA K. Hydrothermal synthesis and characterization of carbon spheres using citric-acid-catalyzed carbonization of starch[J]. E-Polymers, 2015, 15(3): 179-183. |
39 | FAN Z X, ZHANG Q, LI M, et al. Removal behavior and mechanisms of Cd(Ⅱ) by a novel MnS loaded functional biochar: Influence of oxygenation[J]. Journal of Cleaner Production, 2020, 256: 120672. |
40 | CHING S, PETROVAY D J, JORGENSEN M L, et al. Sol-gel synthesis of layered birnessite-type manganese oxides[J]. Inorganic Chemistry, 1997, 36: 883-890. |
41 | DELLA P L, KOMÁREK M, BORDAS F, et al. Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide[J]. Journal of Colloid and Interface Science, 2013, 399: 99-106. |
42 | GAO M L, ZHANG Y, GONG X L, et al. Removal mechanism of di-n-butyl phthalate and oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(8): 7796-7807. |
43 | 左卫元, 仝海娟, 史兵方, 等. 生物炭/锰氧化物复合材料对苯甲酸的吸附研究[J]. 无机盐工业, 2018, 50(8): 57-61. |
ZUO Weiyuan, TONG Haijuan, SHI Bingfang, et al. Adsorption of benzoic acid from aqueous solution by biochar/manganese oxide composite material[J]. Inorganic Chemicals Industry, 2018, 50(8): 57-61. | |
44 | FENG L R, YUAN G D, XIAO L, et al. Biochar modified by nano-manganese dioxide as adsorbent and oxidant for oxytetracycline[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(2): 269-275. |
45 | 赵志伟, 陈晨, 梁志杰, 等. 锰氧化物改性生物炭对水中四环素的强化吸附[J]. 农业环境科学学报, 2021, 40(1): 194-201. |
ZHAO Zhiwei, CHEN Chen, LIANG Zhijie, et al. Enhanced adsorption activity of manganese oxide-modified biochar for the removal of tetracycline from aqueous solution[J]. Journal of Agro-Environment Science, 2021, 40(1): 194-201. | |
46 | SHEN Q B, WANG Z Y, YU Q, et al. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues[J]. Environmental Research, 2020, 183: 109195. |
47 | LIU S J, LIU Y G, TAN X F, et al. Facile synthesis of MnO x -loaded biochar for the removal of doxycycline hydrochloride: Effects of ambient conditions and co-existing heavy metals[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(7): 2187-2197. |
48 | LI J, CAI X X, LIU Y G, et al. Design and synthesis of a biochar-supported nano manganese dioxide composite for antibiotics removal from aqueous solution[J]. Frontiers in Environmental Science, 2020, 8: 62. |
49 | LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquinolone antibiotic removal from water[J]. Environmental Science and Pollution Research, 2018, 25(31): 31136-31148. |
50 | LIU X J, LI M F, SINGH S K. Manganese-modified lignin biochar as adsorbent for removal of methylene blue[J]. Journal of Materials Research and Technology, 2021, 12: 1434-1445. |
51 | IQBAL J, SHAH N S, SAYED M, et al. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions[J]. Journal of Hazardous Materials, 2021, 403: 123854. |
52 | DAI Z P, ZHAO L, PENG S C, et al. Removal of oxytetracycline promoted by manganese-doped biochar based on density functional theory calculations: Comprehensive evaluation of the effect of transition metal doping[J]. Science of the Total Environment, 2022, 806(part 1): 150268. |
53 | TIAN S Q, WANG L, LIU Y L, et al. Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: Formation of highly oxidative manganese intermediate species and in situ activation of biochar[J]. Environmental Science & Technology, 2019, 53(9): 5282-5291. |
54 | TKACZYK A, MITROWSKA K, POSYNIAK A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review[J]. Science of the Total Environment, 2020, 717: 137222. |
55 | XIE N, KANG C, REN D X, et al. Assessment of the variation of heavy metal pollutants in soil and crop plants through field and laboratory tests[J]. Science of the Total Environment, 2022, 811: 152343. |
56 | TAN X, WEI W X, XU C B, et al. Manganese-modified biochar for highly efficient sorption of cadmium[J]. Environmental Science and Pollution Research, 2020, 27(9): 9126-9134. |
57 | ZHANG S Q, ZHANG H Q, LIU F, et al. Effective removal of Cr(Ⅵ) from aqueous solution by biochar supported manganese sulfide[J]. RSC Advances, 2019, 9(54): 31333-31342. |
58 | MANEECHAKR P, MONGKOLLERTLOP S. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104467. |
59 | ZHANG H P, XU F F, XUE J Y, et al. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism[J]. Scientific Reports, 2020, 10: 6067. |
60 | MANEECHAKR P, KARNJANAKOM S. Environmental surface chemistries and adsorption behaviors of metal cations (Fe3+, Fe2+, Ca2+and Zn2+) on manganese dioxide-modified green biochar[J]. RSC Advances, 2019, 9(42): 24074-24086. |
61 | FAHEEM, YU H X, LIU J, et al. Preparation of MnO x -loaded biochar for Pb2+ removal: Adsorption performance and possible mechanism[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 313-320. |
62 | TAN G Q, WU Y, LIU Y, et al. Removal of Pb(Ⅱ) ions from aqueous solution by manganese oxide coated rice straw biochar A low-cost and highly effective sorbent[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84: 85-92. |
63 | WAN S L, QIU L, LI Y, et al. Accelerated antimony and copper removal by manganese oxide embedded in biochar with enlarged pore structure[J]. Chemical Engineering Journal, 2020, 402: 126021. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[5] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[6] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[7] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[8] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[9] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[10] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[11] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[12] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[13] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[14] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[15] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |