化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1594-1607.DOI: 10.16085/j.issn.1000-6613.2021-2278
罗明昀1(), 凌子夜1,2, 方晓明1,2, 张正国1,2()
收稿日期:
2021-11-08
修回日期:
2021-12-25
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
张正国
作者简介:
罗明昀(1997—),男,博士研究生,研究方向为相变储热材料及电池热管理。E-mail:基金资助:
LUO Mingyun1(), LING Ziye1,2, FANG Xiaoming1,2, ZHANG Zhengguo1,2()
Received:
2021-11-08
Revised:
2021-12-25
Online:
2022-03-23
Published:
2022-03-28
Contact:
ZHANG Zhengguo
摘要:
动力电池的最佳工作温度范围为20~50℃,因此热管理系统是其运行过程中不可分割的一部分。相变储热材料在发生相变时可以吸收或释放大量的热量并且温度基本保持不变,在电池热管理中得到广泛应用。本文综述了国内外基于相变储热技术的电池热管理系统的研究进展,主要介绍了基于相变材料的被动式热管理系统、主动式热管理系统以及主动式和被动相结合的耦合式热管理系统。综合来看,复合相变材料形状稳定性好、热导率高,可以有效地降低电池组的温度,提高电池组的温度均匀性。导电复合相变材料的电热转换特性还可用于低温下快速加热电池,实现加热-冷却一体化。然而在相变材料被动式热管理系统中,相变材料吸收的热量无法及时释放出去,热量的堆积会造成系统失效。将主动散热技术与相变材料耦合得到的耦合式热管理系统具有更好的控温性能、稳定性和安全性。此外,相变乳液以及相变微胶囊浆液具有比热容大、可相变等优点,替代水作为电池热管理系统的冷却介质可以获得更好的温度均匀性和更低的功耗。但相变乳液本身的稳定性差、过冷度大等问题亟需解决。总之,电池在高温和低温下都需要进行有效地温控,相变材料如何解决电池全温度段的热管理还值得进一步研究。
中图分类号:
罗明昀, 凌子夜, 方晓明, 张正国. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607.
LUO Mingyun, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress of battery thermal management system based on phase change heat storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1594-1607.
1 | YU L, LI Y P. A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles[J]. Journal of Cleaner Production, 2019, 207: 772-787. |
2 | KABATEPE B, TÜRKAY M. A bi-criteria optimization model to analyze the impacts of electric vehicles on costs and emissions[J]. Computers & Chemical Engineering, 2017, 102: 156-168. |
3 | YOUNG J, BRANS M. Analysis of factors affecting a shift in a local energy system towards 100% renewable energy community[J]. Journal of Cleaner Production, 2017, 169: 117-124. |
4 | SHEN Z G, CHEN S, LIU X, et al. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111301. |
5 | RAMADASS P, HARAN B L, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance[J]. Journal of Power Sources, 2002, 112(2): 606-613. |
6 | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. |
7 | ZHENG S Q, WANG L, FENG X N, et al. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries[J]. Journal of Power Sources, 2018, 378: 527-536. |
8 | WANG Y F, WU J T. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles[J]. Energy Conversion and Management, 2020, 207: 112569. |
9 | WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
10 | KHAN M A, AHMAD I. An analysis of export pattern and competitiveness of India-China in global and bilateral market[J]. FIIB Business Review, 2017, 6(2): 9-18. |
11 | Seventeenth annual battery conference on applications and advances. proceedings of conference (cat. No.02TH8576)[C]//Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No.02TH8576). Long Beach, CA, USA. IEEE, 2002. |
12 | AKINLABI A A H, SOLYALI D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109815. |
13 | HE F, LI X S, MA L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72: 622-629. |
14 | LI X S, HE F, MA L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J]. Journal of Power Sources, 2013, 238: 395-402. |
15 | WANG Y, GAO Q, WANG G H, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. International Journal of Energy Research, 2018, 42(13): 4008-4033. |
16 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
17 | LIU F F, LAN F C, CHEN J Q, et al. Experimental investigation on cooling/heating characteristics of ultra-thin micro heat pipe for electric vehicle battery thermal management[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-10. |
18 | YE X, ZHAO Y H, QUAN Z H. Thermal management system of lithium-ion battery module based on micro heat pipe array[J]. International Journal of Energy Research, 2018, 42(2): 648-655. |
19 | HE F Q, LI X X, ZHANG G Q, et al. Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials[J]. International Journal of Energy Research, 2018, 42(10): 3279-3288. |
20 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
21 | ELIAS C N, STATHOPOULOS V N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage[J]. Energy Procedia, 2019, 161: 385-394. |
22 | AL-HALLAJ S, SELMAN J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J]. Journal of Power Sources, 2002, 110(2): 341-348. |
23 | AL-HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231. |
24 | DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
25 | MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14/15): 1652-1661. |
26 | ZHANG Z G, FANG X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Energy Conversion and Management, 2006, 47(3): 303-310. |
27 | KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation[J]. Journal of Power Sources, 2005, 142(1/2): 345-353. |
28 | KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1): 370-375. |
29 | RAO Z H, WANG S F, ZHANG G Q. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion and Management, 2011, 52(12): 3408-3414. |
30 | LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. |
31 | BOSE P, AMIRTHAM V A. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 81-100. |
32 | WU W X, LIU J Z, LIU M, et al. An innovative battery thermal management with thermally induced flexible phase change material[J]. Energy Conversion and Management, 2020, 221: 113145. |
33 | HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J]. Energy Conversion and Management, 2019, 182: 9-20. |
34 | LAFRANCHE E, KRAWCZAK P. Toughness improvement of novel biobased aromatic polyamide/SEBS/organoclay ternary hybrids[J]. Journal of Applied Polymer Science, 2020, 137(29): 48888. |
35 | GAO J F, WANG L, GUO Z, et al. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications[J]. Chemical Engineering Journal, 2020, 381: 122778. |
36 | WU W F, YE G H, ZHANG G Q, et al. Composite phase change material with room-temperature-flexibility for battery thermal management[J]. Chemical Engineering Journal, 2022, 428: 131116. |
37 | RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2(8): 1-14. |
38 | NOBILI F, MESCHINI I, MANCINI M, et al. High-performance Sn@carbon nanocomposite anode for lithium-ion batteries: lithium storage processes characterization and low-temperature behavior[J]. Electrochimica Acta, 2013, 107: 85-92. |
39 | OUYANG D X, HE Y P, WENG J W, et al. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material[J]. RSC Advances, 2019, 9(16): 9053-9066. |
40 | YANG F, XIE Y Y, DENG Y L, et al. Predictive modeling of battery degradation and greenhouse gas emissions from US state-level electric vehicle operation[J]. Nature Communications, 2018, 9: 2429. |
41 | JONES J P, SMART M C, KRAUSE F C, et al. The effect of electrolyte composition on lithium plating during low temperature charging of Li-ion cells[J]. ECS Transactions, 2017, 75(21): 1-11. |
42 | WU S J, XIONG R, LI H L, et al. The state of the art on preheating lithium-ion batteries in cold weather[J]. Journal of Energy Storage, 2020, 27: 101059. |
43 | HUO Y T, RAO Z H. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method[J]. Energy Conversion and Management, 2017, 33: 204-215. |
44 | LING Z Y, WEN X Y, ZHANG Z G, et al. Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures[J]. Energy Technology, 2016, 4(9): 1071-1076. |
45 | LING Z Y, WEN X Y, ZHANG Z G, et al. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures[J]. Energy, 2018, 144: 977-983. |
46 | ZHONG G J, ZHANG G Q, YANG X Q, et al. Researches of composite phase change material cooling/resistance wire preheating coupling system of a designed 18650-type battery module[J]. Applied Thermal Engineering, 2017, 127: 176-183. |
47 | LUO M Y, SONG J Q, LING Z Y, et al. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from -40℃ to 50℃[J]. Materials Today Energy, 2021, 20: 100652. |
48 | LING Z Y, LUO M Y, SONG J Q, et al. A fast-heat battery system using the heat released from detonated supercooled phase change materials[J]. Energy, 2021, 219: 119496. |
49 | IANNICIELLO L, BIWOLÉ P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials[J]. Journal of Power Sources, 2018, 378: 383-403. |
50 | WENG J W, OUYANG D X, YANG X Q, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: 112071. |
51 | XU L, WANG J P, YANG R. A new flame retardance strategy for shape stabilized phase change materials by surface coating[J]. Solar Energy Materials and Solar Cells, 2017, 170: 87-94. |
52 | HUANG Y H, CHENG Y X, ZHAO R, et al. A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy[J]. Applied Energy, 2020, 262: 114536. |
53 | LI L P, WANG G, GUO C G. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials[J]. Applied Energy, 2016, 162: 428-434. |
54 | LING Z Y, LI S M, CAI C Y, et al. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Applied Thermal Engineering, 2021, 193: 117002. |
55 | ZHANG F R, LIN A Z, WANG P W, et al. Optimization design of a parallel air-cooled battery thermal management system with spoilers[J]. Applied Thermal Engineering, 2021, 182: 116062. |
56 | AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: 117503. |
57 | CHEN D F, JIANG J C, KIM G H, et al. Comparison of different cooling methods for lithium ion battery cells[J]. Applied Thermal Engineering, 2016, 94: 846-854. |
58 | SURESH PATIL M, SEO J H, LEE M Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021, 229: 113715. |
59 | HEKMAT S, MOLAEIMANESH G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: an experimental investigation[J]. Applied Thermal Engineering, 2020, 166: 114759. |
60 | WANG N B, LI C B, LI W, et al. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system: an application of surrogate assisted approach[J]. Journal of Energy Storage, 2021, 40: 102771. |
61 | XU Y R, LI X X, LIU X Y, et al. Experiment investigation on a novel composite silica gel plate coupled with liquid-cooling system for square battery thermal management[J]. Applied Thermal Engineering, 2021, 184: 116217. |
62 | DING Y Z, WEI M X, LIU R. Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling[J]. Applied Thermal Engineering, 2021, 186: 116494. |
63 | JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794. |
64 | LAN W, SHANG B F, WU R K, et al. Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid[J]. International Journal of Thermal Sciences, 2021, 159: 106619. |
65 | MA F, CHEN J, ZHANG P. Experimental study of the hydraulic and thermal performances of nano-sized phase change emulsion in horizontal mini-tubes[J]. Energy, 2018, 149: 944-953. |
66 | MORIMOTO T, KUMANO H. Flow and heat transfer characteristics of phase change emulsions in a circular tube: Part 2. Turbulent flow[J]. International Journal of Heat and Mass Transfer, 2018, 117: 903-911. |
67 | MORIMOTO T, KUMANO H. Flow and heat transfer characteristics of phase change emulsions in a circular tube: Part 1. Laminar flow[J]. International Journal of Heat and Mass Transfer, 2018, 117: 887-895. |
68 | ZHANG X W, KONG X, LI G J, et al. Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions[J]. Energy, 2014, 64: 1092-1101. |
69 | QADERI A, VEYSI F. Investigation of a water-NEPCM cooling thermal management system for cylindrical 18650 Li-ion batteries[J]. Energy, 2021: 122570. |
70 | BAI F F, CHEN M B, SONG W J, et al. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate[J]. Energy, 2019, 167: 561-574. |
71 | LI H, XIAO X Y, WANG Y N, et al. Performance investigation of a battery thermal management system with microencapsulated phase change material suspension[J]. Applied Thermal Engineering, 2020, 180: 115795. |
72 | PAKROUH R, HOSSEINI M J, BAHRAMPOURY R, et al. Cylindrical battery thermal management based on microencapsulated phase change slurry[J]. Journal of Energy Storage, 2021, 40: 102602. |
73 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: 118215. |
74 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: 115808. |
75 | HASSAN M K A, NAGAMUNE K, KAKUTANI K, et al. An ultrasound technique of bone thickness estimation for pedicle screw insertion[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2014, 18(4): 529-537. |
76 | ALI H M. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review[J]. Journal of Energy Storage, 2019, 26: 100986. |
77 | ZHANG W C, QIU J Y, YIN X X, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165: 114571. |
78 | FATHABADI H. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J]. Energy, 2014, 70: 529-538. |
79 | RAO Z H, WANG Q C, HUANG C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669. |
80 | LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. |
81 | MOHAMMADIAN S K, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431-439. |
82 | SUN Z Q, FAN R J, YAN F, et al. Thermal management of the lithium-ion battery by the composite PCM-fin structures[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118739. |
83 | QIN P, LIAO M R, ZHANG D F, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material[J]. Energy Conversion and Management, 2019, 195: 1371-1381. |
84 | JILTE R D, KUMAR R, AHMADI M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling[J]. Applied Thermal Engineering, 2019, 161: 114199. |
85 | SAFDARI M, AHMADI R, SADEGHZADEH S. Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management[J]. Energy, 2020, 193: 116840. |
86 | XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of Power Sources, 2013, 240: 33-41. |
87 | HÉMERY C V, PRA F, ROBIN J F, et al. Experimental performances of a battery thermal management system using a phase change material[J]. Journal of Power Sources, 2014, 270: 349-358. |
88 | LIU Z Q, HUANG J H, CAO M, et al. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling[J]. Applied Thermal Engineering, 2021, 185: 116415. |
89 | MOLAEIMANESH G R, MIRFALLAH NASIRY S M, DAHMARDEH M. Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries[J]. Applied Thermal Engineering, 2020, 181: 116028. |
90 | LING Z Y, CAO J H, ZHANG W B, et al. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology[J]. Applied Energy, 2018, 228: 777-788. |
91 | CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: an experimental and numerical study[J]. Energy, 2020, 191: 116565. |
92 | AN Z G, CHEN X, ZHAO L, et al. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling[J]. Applied Thermal Engineering, 2019, 163: 114345. |
93 | CAO J H, WU Y, LING Z Y, et al. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials[J]. Applied Thermal Engineering, 2021, 199: 117562. |
94 | ZHANG W C, LIANG Z C, YIN X X, et al. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling[J]. Applied Thermal Engineering, 2021, 184: 116380. |
95 | CAO J H, LING Z Y, FANG X M, et al. Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge[J]. Journal of Power Sources, 2020, 450: 227673. |
96 | SUN K J, CHO Y T, CHEON M W. Development of PRF extractor using thermoelectric element and temperature sensor[J]. Sensors and Actuators A: Physical, 2017, 263: 778-782. |
97 | LIAO G L, JIANG K, ZHANG F, et al. Thermal performance of battery thermal management system coupled with phase change material and thermoelectric elements[J]. Journal of Energy Storage, 2021, 43: 103217. |
[1] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[2] | 周涛涛, 熊志波, 吴志根, 李尚. 膨胀石墨/石蜡复合相变材料的导电及发热特性[J]. 化工进展, 2022, 41(2): 892-900. |
[3] | 禹兴海, 唐海慰, 李艳安, 韩玉琦, 闵雪梅. 一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能[J]. 化工进展, 2022, 41(11): 5936-5945. |
[4] | 尹少武, 康鹏, 韩嘉维, 张朝, 王立, 童莉葛. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529. |
[5] | 舒钊, 钟珂, 肖鑫, 贾洪伟, 吕凤勇, 常沙. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
[6] | 徐众, 侯静, 吴恩辉, 李军, 黄平, 唐亚兰. 石墨对活性炭/脂肪酸复合相变材料潜热和导电性能的影响[J]. 化工进展, 2021, 40(7): 3878-3891. |
[7] | 于楠, 陈超, 蔺洁, 韩枫涛, 邹平, 贺祎鹏, 胡庆玲. 应用于太阳能相变蓄热PC构件升温养护建筑的复合相变材料热物性[J]. 化工进展, 2021, 40(1): 297-304. |
[8] | 徐众, 侯静, 李军, 吴恩辉, 黄平, 刘黔蜀, 胥大伟. 膨胀石墨/有机质复合相变材料的制备及性能[J]. 化工进展, 2020, 39(7): 2758-2767. |
[9] | 李毅,袁永熠,廖中亮. 高温甲醇燃料电池热管理系统设计[J]. 化工进展, 2020, 39(3): 916-923. |
[10] | 杨泛明,焦奇方,伍伟,贺国文. 涂碳铝箔对LiFePO4动力电池性能影响[J]. 化工进展, 2019, 38(10): 4639-4644. |
[11] | 贺瑞军, 邹得球, 马先锋, 刘小诗, 郭江荣, 胡志钢, 刘默. 基于碳纳米材料协同强化型复合相变材料的动力电池组传热特性[J]. 化工进展, 2018, 37(11): 4174-4180. |
[12] | 宋俊杰, 王义春, 王腾. 动力电池组分层风冷式热管理系统仿真[J]. 化工进展, 2017, 36(S1): 187-194. |
[13] | 苑坤杰, 张正国, 方晓明, 高学农, 方玉堂. 水合无机盐及其复合相变储热材料的研究进展[J]. 化工进展, 2016, 35(06): 1820-1826. |
[14] | 王 琦,邓思旭,刘晶冰,汪 浩. 提高正极材料磷酸铁锂倍率性能的研究进展[J]. 化工进展, 2011, 30(12): 2652-. |
[15] | 张国庆,吴忠杰,饶中浩,傅李鹏. 动力电池热管冷却效果实验 [J]. 化工进展, 2009, 28(7): 1165-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |