化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6723-6732.DOI: 10.16085/j.issn.1000-6613.2022-0292
韩芬(), 杨娜(), 孙永利, 姜斌, 肖晓明, 张吕鸿()
收稿日期:
2022-02-25
修回日期:
2022-04-05
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
张吕鸿
作者简介:
韩芬(1997—),女,硕士研究生,研究方向为油水聚结分离。E-mail:doubleyx99_99@tju.edu.cn基金资助:
HAN Fen(), YANG Na(), SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong()
Received:
2022-02-25
Revised:
2022-04-05
Online:
2022-12-20
Published:
2022-12-29
Contact:
ZHANG Lyuhong
摘要:
随着油水分离技术的进步及新材料的开发,聚结法脱除油中乳化水的技术得以实现。本文采用亲水性玻璃纤维作为聚结元件,脱除白油中的乳化水(d95=10μm)。通过实验考察聚结器中进料的表观流速(5~30m/h)、油品初始含水量(500~4000μL/L)、聚结器床层厚度(100~400mm)和玻璃纤维的孔隙率(0.80~0.95)对聚结分离效率的影响,并应用响应面法对各变量之间的协同效应进行分析,确定最佳操作条件,分析该条件下的粒级分离效率。实验结果显示,当表观流速为14m/h、初始含水量为1278μL/L、床层厚度为275mm和孔隙率为0.85时,分离效率最高,为95.18%。结果与响应面预测值(95.02%)相比,相对误差仅为0.17%,表明回归模型的可靠性高和实验的重现性较好。进出口粒径的分析表明聚结器的分离效果随水滴粒径的增加而提高,有效分离粒径>5μm。本文研究结果对采用玻璃纤维为聚结元件,分离密度差较大的成品油中乳化水的聚结器选型及操作参数设计具有实际应用价值。
中图分类号:
韩芬, 杨娜, 孙永利, 姜斌, 肖晓明, 张吕鸿. 玻璃纤维聚结器脱除油中乳化水[J]. 化工进展, 2022, 41(12): 6723-6732.
HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732.
液体 | 密度/kg·m-3 | 黏度/mPa·s | 表面张力/mN·m-1 |
---|---|---|---|
去离子水 | 998.2 | 1.05 | 72.3 |
3#工业白油 | 811.2 | 4.28 | 30.2 |
表1 油/水在20℃时的物性参数
液体 | 密度/kg·m-3 | 黏度/mPa·s | 表面张力/mN·m-1 |
---|---|---|---|
去离子水 | 998.2 | 1.05 | 72.3 |
3#工业白油 | 811.2 | 4.28 | 30.2 |
变量 因素 | 变量 编码 | 编码水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
表观流速/m·h-1 | A | 10 | 20 | 30 |
初始含水量/μL·L-1 | B | 500 | 1000 | 1500 |
床层厚度/mm | C | 100 | 200 | 300 |
床层孔隙率 | D | 0.80 | 0.85 | 0.90 |
表2 实验水平因素表
变量 因素 | 变量 编码 | 编码水平 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
表观流速/m·h-1 | A | 10 | 20 | 30 |
初始含水量/μL·L-1 | B | 500 | 1000 | 1500 |
床层厚度/mm | C | 100 | 200 | 300 |
床层孔隙率 | D | 0.80 | 0.85 | 0.90 |
实验号 | 表观流速 /m·h-1 | 初始含水量 /μL·L-1 | 床层厚度 /mm | 床层孔隙率 | 分离效率 /% |
---|---|---|---|---|---|
1 | 10 | 1000 | 200 | 0.90 | 91.65 |
2 | 20 | 500 | 100 | 0.85 | 63.34 |
3 | 30 | 1000 | 300 | 0.85 | 82.12 |
4 | 10 | 1000 | 100 | 0.85 | 90.54 |
5 | 10 | 500 | 200 | 0.85 | 69.23 |
6 | 10 | 1000 | 200 | 0.80 | 92.89 |
7 | 20 | 1000 | 200 | 0.85 | 87.98 |
8 | 20 | 1500 | 100 | 0.85 | 87.05 |
9 | 20 | 1500 | 200 | 0.80 | 86.02 |
10 | 30 | 1000 | 200 | 0.90 | 78.04 |
11 | 10 | 1000 | 300 | 0.85 | 91.55 |
12 | 20 | 500 | 300 | 0.85 | 70.03 |
13 | 20 | 1000 | 300 | 0.85 | 88.39 |
14 | 30 | 500 | 200 | 0.85 | 58.78 |
15 | 30 | 1000 | 200 | 0.80 | 80.32 |
16 | 10 | 1500 | 200 | 0.85 | 94.98 |
17 | 20 | 1000 | 200 | 0.85 | 86.08 |
18 | 20 | 1500 | 200 | 0.90 | 88.45 |
19 | 20 | 1000 | 300 | 0.85 | 87.56 |
20 | 30 | 1500 | 200 | 0.85 | 76.08 |
21 | 20 | 1000 | 200 | 0.85 | 85.58 |
22 | 20 | 1000 | 300 | 0.90 | 87.38 |
23 | 20 | 1000 | 100 | 0.90 | 83.57 |
24 | 20 | 500 | 200 | 0.90 | 65.03 |
25 | 20 | 1500 | 300 | 0.85 | 92.31 |
26 | 20 | 500 | 200 | 0.80 | 69.23 |
27 | 20 | 1000 | 300 | 0.80 | 91.56 |
28 | 30 | 1000 | 100 | 0.85 | 75.09 |
29 | 20 | 1000 | 100 | 0.80 | 86.23 |
表3 实验方案及结果
实验号 | 表观流速 /m·h-1 | 初始含水量 /μL·L-1 | 床层厚度 /mm | 床层孔隙率 | 分离效率 /% |
---|---|---|---|---|---|
1 | 10 | 1000 | 200 | 0.90 | 91.65 |
2 | 20 | 500 | 100 | 0.85 | 63.34 |
3 | 30 | 1000 | 300 | 0.85 | 82.12 |
4 | 10 | 1000 | 100 | 0.85 | 90.54 |
5 | 10 | 500 | 200 | 0.85 | 69.23 |
6 | 10 | 1000 | 200 | 0.80 | 92.89 |
7 | 20 | 1000 | 200 | 0.85 | 87.98 |
8 | 20 | 1500 | 100 | 0.85 | 87.05 |
9 | 20 | 1500 | 200 | 0.80 | 86.02 |
10 | 30 | 1000 | 200 | 0.90 | 78.04 |
11 | 10 | 1000 | 300 | 0.85 | 91.55 |
12 | 20 | 500 | 300 | 0.85 | 70.03 |
13 | 20 | 1000 | 300 | 0.85 | 88.39 |
14 | 30 | 500 | 200 | 0.85 | 58.78 |
15 | 30 | 1000 | 200 | 0.80 | 80.32 |
16 | 10 | 1500 | 200 | 0.85 | 94.98 |
17 | 20 | 1000 | 200 | 0.85 | 86.08 |
18 | 20 | 1500 | 200 | 0.90 | 88.45 |
19 | 20 | 1000 | 300 | 0.85 | 87.56 |
20 | 30 | 1500 | 200 | 0.85 | 76.08 |
21 | 20 | 1000 | 200 | 0.85 | 85.58 |
22 | 20 | 1000 | 300 | 0.90 | 87.38 |
23 | 20 | 1000 | 100 | 0.90 | 83.57 |
24 | 20 | 500 | 200 | 0.90 | 65.03 |
25 | 20 | 1500 | 300 | 0.85 | 92.31 |
26 | 20 | 500 | 200 | 0.80 | 69.23 |
27 | 20 | 1000 | 300 | 0.80 | 91.56 |
28 | 30 | 1000 | 100 | 0.85 | 75.09 |
29 | 20 | 1000 | 100 | 0.80 | 86.23 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 2728.60 | 14 | 194.91 | 121.59 | <0.0001 | 显著 |
A | 538.81 | 1 | 538.81 | 336.11 | <0.0001 | |
B | 1388.26 | 1 | 1388.26 | 865.98 | <0.0001 | |
C | 69.84 | 1 | 69.84 | 43.57 | <0.0001 | |
D | 12.26 | 1 | 12.26 | 7.65 | 0.0152 | |
AB | 17.85 | 1 | 17.85 | 11.44 | 0.0049 | |
AC | 9.06 | 1 | 9.06 | 5.65 | 0.0322 | |
AD | 0.27 | 1 | 0.27 | 0.17 | 0.6875 | |
BC | 0.65 | 1 | 0.65 | 0.40 | 0.5352 | |
BD | 10.99 | 1 | 10.99 | 6.85 | 0.0202 | |
CD | 0.58 | 1 | 0.58 | 0.36 | 0.5579 | |
A2 | 31.51 | 1 | 31.51 | 19.65 | 0.0006 | |
B2 | 625.38 | 1 | 625.38 | 390.11 | <0.0001 | |
C2 | 0.29 | 1 | 0.29 | 0.18 | 0.6777 | |
D2 | 0.22 | 1 | 0.22 | 0.14 | 0.7176 | |
残差 | 22.44 | 14 | 1.60 | |||
失拟项 | 16.44 | 10 | 1.64 | 1.10 | 0.5066 | 不显著 |
纯误差 | 6.00 | 4 | 1.50 | |||
总和 | 2751.24 | 28 |
表4 响应面模型方差分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 2728.60 | 14 | 194.91 | 121.59 | <0.0001 | 显著 |
A | 538.81 | 1 | 538.81 | 336.11 | <0.0001 | |
B | 1388.26 | 1 | 1388.26 | 865.98 | <0.0001 | |
C | 69.84 | 1 | 69.84 | 43.57 | <0.0001 | |
D | 12.26 | 1 | 12.26 | 7.65 | 0.0152 | |
AB | 17.85 | 1 | 17.85 | 11.44 | 0.0049 | |
AC | 9.06 | 1 | 9.06 | 5.65 | 0.0322 | |
AD | 0.27 | 1 | 0.27 | 0.17 | 0.6875 | |
BC | 0.65 | 1 | 0.65 | 0.40 | 0.5352 | |
BD | 10.99 | 1 | 10.99 | 6.85 | 0.0202 | |
CD | 0.58 | 1 | 0.58 | 0.36 | 0.5579 | |
A2 | 31.51 | 1 | 31.51 | 19.65 | 0.0006 | |
B2 | 625.38 | 1 | 625.38 | 390.11 | <0.0001 | |
C2 | 0.29 | 1 | 0.29 | 0.18 | 0.6777 | |
D2 | 0.22 | 1 | 0.22 | 0.14 | 0.7176 | |
残差 | 22.44 | 14 | 1.60 | |||
失拟项 | 16.44 | 10 | 1.64 | 1.10 | 0.5066 | 不显著 |
纯误差 | 6.00 | 4 | 1.50 | |||
总和 | 2751.24 | 28 |
变异系数/% | R2 | 预测的R2 | 调整后的R2 | 精密度 |
---|---|---|---|---|
1.54 | 0.9918 | 0.9622 | 0.9837 | 38.341 |
表5 响应面模型可信度分析
变异系数/% | R2 | 预测的R2 | 调整后的R2 | 精密度 |
---|---|---|---|---|
1.54 | 0.9918 | 0.9622 | 0.9837 | 38.341 |
1 | 高昊鹏, 杨宏伟, 杨士亮, 等. 润滑油中水分的危害及其检测研究[J]. 当代化工, 2014, 43(2): 240-242. |
GAO Haopeng, YANG Hongwei, YANG Shiliang, et al. Research on hazards and detection of water in lubricant oil[J]. Contemporary Chemical Industry, 2014, 43(2): 240-242. | |
2 | 秦娟, 辛寅昌, 马德华. 微乳液的油水分离和机理探讨及应用[J]. 化工学报, 2013, 64(5): 1797-1802. |
QIN Juan, XIN Yinchang, MA Dehua. Separation mechanism and application of oil-water microemulsion[J]. CIESC Journal, 2013, 64(5): 1797-1802. | |
3 | ZHANG Jin, ZHAO Jianguo, QU Wenshan, et al. One-step, low-cost, mussel-inspired green method to prepare superhydrophobic nanostructured surfaces having durability, efficiency, and wide applicability[J]. Journal of Colloid and Interface Science, 2020, 580: 211-222. |
4 | YUAN Huaikui, HUANG Zhiming, SHEN Liwei, et al. Demulsification of crude oil emulsion using carbonized cotton/silica composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126421. |
5 | 杨玉洁, 陈雯雯, 张倩, 等. 聚结技术及其乳化油水分离性能[J]. 化工进展, 2019, 38(S1): 10-18. |
YANG Yujie, CHEN Wenwen, ZHANG Qian, et al. Coalescence technology and its application in the separation of oil and water emulsion[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 10-18. | |
6 | GADHAVE Ashish D, Neda MEHDIZADEH S, CHASE George G. Effect of pore size and wettability of multilayered coalescing filters on water-in-ULSD coalescence[J]. Separation and Purification Technology, 2019, 221: 236-248. |
7 | LOBO Lloyd, IVANOV Ivan, WASAN Darsh. Dispersion coalescence: kinetic stability of creamed dispersions[J]. AIChE Journal, 1993, 39(2): 322-334. |
8 | HAZLETT R N. Fibrous bed coalescence of water. Role of a sulfonate surfactant in the coalescence process[J]. Industrial & Engineering Chemistry Fundamentals, 1969, 8(4): 633-640. |
9 | KULKARNI Prashant S, PATEL Shagufta U, CHASE George G. Layered hydrophilic/hydrophobic fiber media for water-in-oil coalescence[J]. Separation and Ourification Technology, 2012, 85: 157-164. |
10 | LU Zhaojin, BAI Zhishan, LUO Huiqing, et al. Effect and optimization of bed properties on water-in-oil emulsion separation[J]. Journal of Dispersion Science and Technology, 2019, 40(3): 415-424. |
11 | HAN Qiang, KANG Yong. Separation of water-in-oil emulsion with microfiber glass coalescing bed[J]. Journal of Dispersion Science and Technology, 2017, 38(11): 1523-1529. |
12 | 刘亚莉, 吴山东, 戚俊清. 聚结材料对油品脱水的影响[J]. 化工进展, 2006, 25(S1): 159-162. |
LIU Yali, WU Shandong, QI Junqing. Effect of coalescence packing material on removaling water from oil[J]. Chemical Industry and Engineering Progress, 2006, 25(S1): 159-162. | |
13 | AGARWAL Swarna, VON ARNIM Volkmar, STEGMAIER Thomas, et al. Effect of fibrous coalescer geometry and operating conditions on emulsion separation[J]. Industrial & Engineering Chemistry Research, 2013, 52(36): 13164-13170. |
14 | LU Hao, YANG Qiang, XU Xiao, et al. Effect of the mixed oleophilic fibrous coalescer geometry and the operating conditions on oily wastewater separation[J]. Chemical Eengineering & Technology, 2016, 39(2): 255-262. |
15 | Radmila M Šećerov SOKOLOVIĆ, SOKOLOVIĆ Slobodan M. Effect of the nature of different polymeric fibers on steady-state bed coalescence of an oil-in-water emulsion[J]. Industrial & Engineering Chemistry Research, 2004, 43(20): 6490-6495. |
16 | ZHOU Yanbo, CHEN Li, HU Xiaomeng, et al. Modified resin coalescer for oil-in-water emulsion treatment: effect of operating conditions on oil removal performance[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1660-1664. |
17 | ZHANG Luhong, ZHU Taoyue, SUN Yongli, et al. Experimental study of precision-woven fabrics for oil-in-water emulsion coalescence: operating conditions and oil saturation[J]. Journal of Dispersion Science and Technology, 2015, 36(2): 182-189. |
18 | Radmila M Šećerov SOKOLOVIĆ, VULIC Tatjana J, SOKOLOVIĆ Slobodan M. Effect of bed length on steady-state coalescence of oil-in-water emulsion[J]. Separation and Purification Technology, 2007, 56(1): 79-84. |
19 | SHIN C, CHASE G G, RENEKER D H. Recycled expanded polystyrene nanofibers applied in filter media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262(1/2/3): 211-215. |
20 | 郑国兴, 蒋明虎, 王凤山. 含聚浓度对旋流器流场分布和分离性能的影响[J]. 化工机械, 2020, 47(2): 207-210. |
ZHENG Guoxing, JIANG Minghu, WANG Fengshan. Effect of polymer concentration on the flow filed distribution and separation performance of hydrocyclone[J]. Chemical Engineering & Machinery. 2020, 47(2): 207-210. | |
21 | 孙烁, 刘其友, 陈水泉, 等. 利用响应面法对L-2菌株降解石油烃进行优化[J]. 化工进展, 2019, 38(12): 5512-5518. |
SUN Shuo, LIU Qiyou, CHEN Shuiquan, et al. Optimization for degradation of total petroleum hydrocarbon by the strain L-2 with response surface methodology[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5512-5518. | |
22 | 张圆圆, 孟永斌, 张琳, 等. 响应面法优化微波辅助水蒸气蒸馏法提取油樟精油工艺[J]. 化工进展, 2020, 39(S2): 291-299. |
ZHANG Yuanyuan, MENG Yongbin, ZHANG Lin, et al. Optimization of microwave-assisted steam distillation extraction of Cinnamomum longepaniculatum essential oil by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 291-299. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[4] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[5] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[6] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[7] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[8] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[9] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[10] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[11] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[12] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[13] | 周磊, 孙晓岩, 陶少辉, 陈玉石, 项曙光. 基于分离因数法的简捷炼油塔模型开发及应用[J]. 化工进展, 2023, 42(6): 2819-2827. |
[14] | 吴和平, 曹宁, 徐圆圆, 曹云波, 李裕东, 杨强, 卢浩. 氢氟酸与烷基化油快速分离[J]. 化工进展, 2023, 42(6): 2845-2853. |
[15] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |