化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6733-6743.DOI: 10.16085/j.issn.1000-6613.2022-0443
• 资源与环境化工 • 上一篇
收稿日期:
2022-03-21
修回日期:
2022-04-12
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
李玉芹
作者简介:
齐振华(1996—),女,硕士研究生,研究方向为资源与环境化工。E-mail:2415099090@qq.com。
基金资助:
QI Zhenhua(), ZHOU Rong, BAI Yanan, LI Yuqin(
), TANG Yufang
Received:
2022-03-21
Revised:
2022-04-12
Online:
2022-12-20
Published:
2022-12-29
Contact:
LI Yuqin
摘要:
考察利用小球藻强化处理曲霉发酵废水(发酵废水)并联产高质蛋白饲料的可行性。小球藻在流加补料模式下使得发酵废水总磷(TP)、总氮(TN)、氨氮(NH3-N)、化学需氧量(COD)、生化需氧量(BOD)去除率分别达到99.5%、95.1%、99.4%、98.2%和99.7%,较分批模式下污染物去除率提高了1.47倍、1.45倍、1.22倍、1.13倍和1.19倍,且其出水水质符合GB 25463—2010排放标准。联产获得小球藻生物量和蛋白高达48.53g/L和27.20g/L,藻蛋白中18种氨基酸含量为58.56%,8种必需氨基酸含量为26.44%,氨基酸评分65.3,属优质单细胞蛋白源。小球藻脂肪酸以C16~C18为主(˃86%),亚油酸和亚麻酸含量分别为27.06%和25.82%。小球藻重金属(铅、砷、镉、汞、铬)和微生物(沙门氏菌、霉菌、细菌)安全指标符合GB 13078—2017饲料卫生标准。进一步地,体外模拟猪肠胃液对藻粉干物质、粗蛋白、粗脂肪和淀粉消化率为79.02%、90.17%、92.93%和87.81%,小肠Caco-2细胞对藻粉消化物多肽、甘油三酯、游离脂肪酸和碳水化合物吸收率为97.57%、85.79%、91.55%和35.22%,与常规玉米、豆粕饲料消化吸收率相当,结果可为他种微藻净化工业废水耦合高值精细化学品生产提供依据。
中图分类号:
齐振华, 周蓉, 白亚楠, 李玉芹, 唐裕芳. 小球藻流加补料强化处理发酵废水联产高质蛋白饲料[J]. 化工进展, 2022, 41(12): 6733-6743.
QI Zhenhua, ZHOU Rong, BAI Yanan, LI Yuqin, TANG Yufang. Fermentation wastewater treatment and high-quality protein production by Chlorella pyrenoidosa under fed-batch mode[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6733-6743.
发酵废水指标 | 进水(未处理) /mg·L-1 | 出水(小球藻分批模式处理) /mg·L-1 | 出水(小球藻流加补料模式处理) /mg·L-1 | 去除率 /% | GB 25463—2010排放标准 /mg·L-1 |
---|---|---|---|---|---|
TP | 369.7 | 119.34 | 1.89 | 99.5 | 2.0 |
TN | 887.1 | 306.14 | 43.75 | 95.1 | 50 |
NH3-N | 317.8 | 59.87 | 1.98 | 99.4 | 25 |
COD | 15123 | 1994.81 | 276.53 | 98.2 | 300 |
BOD | 12514 | 1997.23 | 41.43 | 99.7 | 50 |
表1 小球藻流加补料模式处理对发酵废水污染物去除率
发酵废水指标 | 进水(未处理) /mg·L-1 | 出水(小球藻分批模式处理) /mg·L-1 | 出水(小球藻流加补料模式处理) /mg·L-1 | 去除率 /% | GB 25463—2010排放标准 /mg·L-1 |
---|---|---|---|---|---|
TP | 369.7 | 119.34 | 1.89 | 99.5 | 2.0 |
TN | 887.1 | 306.14 | 43.75 | 95.1 | 50 |
NH3-N | 317.8 | 59.87 | 1.98 | 99.4 | 25 |
COD | 15123 | 1994.81 | 276.53 | 98.2 | 300 |
BOD | 12514 | 1997.23 | 41.43 | 99.7 | 50 |
营养成分 | Basal培养基小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
粗蛋白 | 36.86 | 59.89 |
多糖 | 8.11 | 6.64 |
油脂 | 34.00 | 18.12 |
灰分 | 8.75 | 9.14 |
表2 小球藻发酵废水处理获得藻粉主要营养成分(以干物质质量分数计,%)
营养成分 | Basal培养基小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
粗蛋白 | 36.86 | 59.89 |
多糖 | 8.11 | 6.64 |
油脂 | 34.00 | 18.12 |
灰分 | 8.75 | 9.14 |
氨基酸种类 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
苏氨酸① | 1.64 | 2.76 |
缬氨酸① | 2.19 | 3.75 |
蛋氨酸① | 0.52 | 1.71 |
异亮氨酸① | 1.07 | 2.99 |
亮氨酸① | 2.83 | 5.51 |
苯丙氨酸① | 1.65 | 3.46 |
赖氨酸① | 2.33 | 3.96 |
色氨酸① | 1.92 | 2.3 |
天冬氨酸 | 3.47 | 5.76 |
丝氨酸 | 1.61 | 1.94 |
谷氨酸 | 5.28 | 6.02 |
甘氨酸 | 2.15 | 3.41 |
丙氨酸 | 3.10 | 4.61 |
半胱氨酸 | 0.20 | 0.44 |
酪氨酸 | 1.13 | 1.86 |
组氨酸 | 0.70 | 1.22 |
精氨酸 | 2.38 | 3.83 |
脯氨酸 | 1.61 | 3.03 |
必需氨基酸(EAA) | 14.15 | 26.44 |
总氨基酸(TAA) | 33.85 | 58.56 |
非必需氨(NEAA) | 20.92 | 32.12 |
EAA/TAA | 0.42 | 0.45 |
EAA/NEAA | 0.68 | 0.82 |
氨基酸分 | 64.2 | 65.3 |
表3 小球藻发酵废水处理获得藻粉氨基酸组成及含量单位:mg·(100mg干重)-1
氨基酸种类 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
苏氨酸① | 1.64 | 2.76 |
缬氨酸① | 2.19 | 3.75 |
蛋氨酸① | 0.52 | 1.71 |
异亮氨酸① | 1.07 | 2.99 |
亮氨酸① | 2.83 | 5.51 |
苯丙氨酸① | 1.65 | 3.46 |
赖氨酸① | 2.33 | 3.96 |
色氨酸① | 1.92 | 2.3 |
天冬氨酸 | 3.47 | 5.76 |
丝氨酸 | 1.61 | 1.94 |
谷氨酸 | 5.28 | 6.02 |
甘氨酸 | 2.15 | 3.41 |
丙氨酸 | 3.10 | 4.61 |
半胱氨酸 | 0.20 | 0.44 |
酪氨酸 | 1.13 | 1.86 |
组氨酸 | 0.70 | 1.22 |
精氨酸 | 2.38 | 3.83 |
脯氨酸 | 1.61 | 3.03 |
必需氨基酸(EAA) | 14.15 | 26.44 |
总氨基酸(TAA) | 33.85 | 58.56 |
非必需氨(NEAA) | 20.92 | 32.12 |
EAA/TAA | 0.42 | 0.45 |
EAA/NEAA | 0.68 | 0.82 |
氨基酸分 | 64.2 | 65.3 |
脂肪酸组分 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
棕榈酸(C16∶0) | 2.88 | 3.17 |
棕榈油酸(C16∶1) | 5.35 | 5.92 |
十六碳二烯酸(C16∶2) | 1.01 | 1.33 |
十六碳三烯酸(C16∶3) | 2.22 | 2.56 |
硬脂酸(C18∶0) | 11.17 | 7.04 |
油酸(C18∶1) | 9.02 | 7.10 |
亚油酸(C18∶2) | 20.60 | 27.06 |
亚麻酸(C18∶3) | 18.68 | 25.82 |
二十烷酸(C20∶0) | 1.97 | 2.39 |
表4 小球藻发酵废水处理获得藻粉脂肪酸含量和组成(质量分数,%)
脂肪酸组分 | Basal小球藻粉 | 发酵废水小球藻粉 |
---|---|---|
棕榈酸(C16∶0) | 2.88 | 3.17 |
棕榈油酸(C16∶1) | 5.35 | 5.92 |
十六碳二烯酸(C16∶2) | 1.01 | 1.33 |
十六碳三烯酸(C16∶3) | 2.22 | 2.56 |
硬脂酸(C18∶0) | 11.17 | 7.04 |
油酸(C18∶1) | 9.02 | 7.10 |
亚油酸(C18∶2) | 20.60 | 27.06 |
亚麻酸(C18∶3) | 18.68 | 25.82 |
二十烷酸(C20∶0) | 1.97 | 2.39 |
指标 | GB 13078—2017 | Basal小球藻粉 | 发酵废水小球藻 |
---|---|---|---|
沙门氏菌/CFU·g-1 | 不得检出 | 未检出 | 未检出 |
霉菌总数/CFU·g-1 | <2×104 | 3×103 | 3×103 |
细菌总数/CFU·g-1 | <2×106 | 4×103 | 2×104 |
铅/mg·kg-1 | ≤5 | 未检出 | 未检出 |
砷/mg·kg-1 | ≤40 | 0.069 | 0.025 |
镉/mg·kg-1 | ≤2 | 未检出 | 0.0056 |
汞/mg·kg-1 | ≤0.1 | 未检出 | 未检出 |
铬/mg·kg-1 | ≤5 | 4.7 | 2.33 |
表5 小球藻粉微生物和重金属检测
指标 | GB 13078—2017 | Basal小球藻粉 | 发酵废水小球藻 |
---|---|---|---|
沙门氏菌/CFU·g-1 | 不得检出 | 未检出 | 未检出 |
霉菌总数/CFU·g-1 | <2×104 | 3×103 | 3×103 |
细菌总数/CFU·g-1 | <2×106 | 4×103 | 2×104 |
铅/mg·kg-1 | ≤5 | 未检出 | 未检出 |
砷/mg·kg-1 | ≤40 | 0.069 | 0.025 |
镉/mg·kg-1 | ≤2 | 未检出 | 0.0056 |
汞/mg·kg-1 | ≤0.1 | 未检出 | 未检出 |
铬/mg·kg-1 | ≤5 | 4.7 | 2.33 |
1 | MADILINDI M A, ZISHIRI O T, DUBE B, et al. Technological advances in genetic improvement of feed efficiency in dairy cattle: a review[J]. Livestock Science, 2022, 258: 104871. |
2 | GOSWAMI Rahul Kumar, MEHARIYA Sanjeet, VERMA Pradeep, et al. Microalgae-based biorefineries for sustainable resource recovery from wastewater[J]. Journal of Water Process Engineering, 2021, 40: 101747. |
3 | 邹帅, 李玉芹, 马怡然, 等. 二乙醇胺强化胶球藻Coccomyxa subellipsoidea C-169固定CO2和积累油脂[J]. 化工进展, 2021, 40(9): 5222-5230. |
ZOU Shuai, LI Yuqin, MA Yiran, et al. Diethanolamine strengthening CO2 fixation and lipid accumulation in Coccomyxa subellipsoidea C-169[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5222-5230. | |
4 | WU Y B, LI L, WEN Z G, et al. Dual functions of eicosapentaenoic acid-rich microalgae: enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens[J]. Poultry Science, 2019, 98(1): 350-357. |
5 | AO T, MACALINTAL L M, PAUL M A, et al. Effects of supplementing microalgae in laying hen diets on productive performance, fatty-acid profile, and oxidative stability of eggs[J]. The Journal of Applied Poultry Research, 2015, 24(3): 394-400. |
6 | OH S, ZHENG L, KWON H J, et al. Effects of dietary fermented chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in Pekin ducks[J]. Asian-Australasian Journal of Animal Sciences, 2014, 28(1): 95-101. |
7 | 曹申平, 韩冬, 解绶启, 等. 螺旋藻粉替代饲料中鱼粉对异育银鲫幼鱼生长、饲料利用和蛋白沉积的影响[J]. 水生生物学报, 2016, 40(4): 647-654. |
CAO Shenping, HAN Dong, XIE Shouqi, et al. Effects of dietary fishmeal replacement with spirulina platensis powder on the growth performance, feed utilization and protein deposition in juvenile gibel carp(carassis auratus gibelio var. cas)[J]. Acta Hydrobiologica Sinica, 2016, 40(4): 647-654. | |
8 | FADL Sabreen E, ELGOHARY M S, ELSADANY Abdelgawad Y, et al. Contribution of microalgae-enriched fodder for the Nile tilapia to growth and resistance to infection with Aeromonas hydrophila [J]. Algal Research, 2017, 27: 82-88. |
9 | HEROLD Clemens, ISHIKA Tasneema, NWOBA Emeka G, et al. Biomass production of marine microalga Tetraselmis suecica using biogas and wastewater as nutrients[J]. Biomass and Bioenergy, 2021, 145: 105945. |
10 | HUSSAIN Fida, SHAH Syed Z, AHMAD Habib, et al. Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110603. |
11 | WANG Qingke, YU Zongyi, WEI Dong. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater[J]. Bioresource Technology, 2020, 313: 123499. |
12 | WANG Shikai, WANG Xu, MIAO Jing, et al. Tofu whey wastewater is a promising basal medium for microalgae culture[J]. Bioresource Technology, 2018, 253: 79-84. |
13 | MOHEIMANI Navid Reza, VADIVELOO Ashiwin, AYRE Jeremy Miles, et al. Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent[J]. Algal Research, 2018, 35: 362-369. |
14 | CHEN Chun-Yen, Enwei KUO, NAGARAJAN Dillirani, et al. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production[J]. Bioresource Technology, 2020, 302: 122814. |
15 | MADEIRA Marta S, CARDOSO Carlos, LOPES Paula A, et al. Microalgae as feed ingredients for livestock production and meat quality: a review[J]. Livestock Science, 2017, 205: 111-121. |
16 | MU Jinxiu, LI Shitian, CHEN Di, et al. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides [J]. Bioresource Technology, 2015, 185: 99-105. |
17 | AUSSANT Justine, Freddy GUIHÉNEUF, STENGEL Dagmar B. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae[J]. Applied Microbiology and Biotechnology, 2018, 102(12): 5279-5297. |
18 | 张立兰, 高理想, 陈亮, 等. 体外消化法优化生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮非淀粉多糖酶谱的研究[J]. 畜牧兽医学报, 2017, 48(8): 1468-1480. |
ZHANG Lilan, GAO Lixiang, CHEN Liang, et al. Optimization of non-starch polysaccharide enzymes of corn-soybean-DDGS and wheat-soybean diets for growing pig using in vitro method[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(8): 1468-1480. | |
19 | 霍艳姣, 王波, 郭珊珊, 等. 鱼肉蛋白肽在模拟胃肠消化吸收过程中的抗氧化活性和生物利用度[J]. 食品工业科技, 2016, 37(6): 174-178, 186. |
HUO Yanjiao, WANG Bo, GUO Shanshan, et al. Antioxidant activity and bioavailability of the Pacific cod meat peptides during simulated gastrointestinal digestion and absorption[J]. Science and Technology of Food Industry, 2016, 37(6): 174-178, 186. | |
20 | QUIJANO Guillermo, ARCILA Juan S, Germán BUITRÓN. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment[J]. Biotechnology Advances, 2017, 35(6): 772-781. |
21 | GAO Feng, YANG Ziyan, ZHAO Qiaoling, et al. Mixotrophic cultivation of microalgae coupled with anaerobic hydrolysis for sustainable treatment of municipal wastewater in a hybrid system of anaerobic membrane bioreactor and membrane photobioreactor[J]. Bioresource Technology, 2021, 337: 125457. |
22 | Ainoa MORILLAS-ESPAÑA, Ana SÁNCHEZ-ZURANO, LAFARGA Tomás, et al. Improvement of wastewater treatment capacity using the microalga Scenedesmus sp. and membrane bioreactors[J]. Algal Research, 2021, 60: 102516. |
23 | KIRCHNER Nicholas J, HAGE Adam, GOMEZ Jose, et al. Photosynthesis, competition, and wastewater treatment characteristics of the microalga Monoraphidium sp. Dek19 at cool temperatures[J]. Algal Research, 2022, 62: 102624. |
24 | WANG Qingke, YU Zongyi, WEI Dong, et al. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation[J]. Bioresource Technology, 2021, 333: 125151. |
25 | ZHOU Youcai, HE Yongjin, XIAO Xuehua, et al. A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species [J]. Bioresource Technology, 2022, 343: 125994. |
26 | AZAM Rifat, KOTHARI Richa, SINGH Har Mohan, et al. Cultivation of two Chlorella species in open sewage contaminated channel wastewater for biomass and biochemical profiles: comparative lab-scale approach[J]. Journal of Biotechnology, 2022, 344: 24-31. |
27 | WANG Yue, GUO Wanqian, YEN Hong-Wei, et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J]. Bioresource Technology, 2015, 198: 619-625. |
28 | TAN Xiaobo, YANG Libin, ZHANG Yalei, et al. Chlorella pyrenoidosa cultivation in outdoors using the diluted anaerobically digested activated sludge[J]. Bioresource Technology, 2015, 198: 340-350. |
29 | CHENG Pengfei, CHU Ruirui, ZHANG Xuezhi, et al. Screening of the dominant Chlorella pyrenoidosa for biofilm attached culture and feed production while treating swine wastewater[J]. Bioresource Technology, 2020, 318: 124054. |
30 | CHENG Pengfei, HUANG Jianke, SONG Xiaotong, et al. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production[J]. Bioresource Technology, 2022, 349: 126888. |
31 | SONG Chunfeng, LIU Jie, XIE Meilian, et al. Intensification of a novel absorption-microalgae hybrid CO2 utilization process via fed-batch mode optimization[J]. International Journal of Greenhouse Gas Control, 2019, 82: 1-7. |
32 | LI Yuqin, XU Hua, HAN Fangxin, et al. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime[J]. Bioresource Technology, 2015, 192: 781-791. |
33 | MATOS Ângelo Paggi, CAVANHOLI Monnik Gandin, MOECKE Elisa Helena Siegel, et al. Effects of different photoperiod and trophic conditions on biomass, protein and lipid production by the marine alga Nannochloropsis gaditana at optimal concentration of desalination concentrate[J]. Bioresource Technology, 2017, 224: 490-497. |
34 | NICCOLAI Alberto, CHINI ZITTELLI Graziella, RODOLFI Liliana, et al. Microalgae of interest as food source: biochemical composition and digestibility[J]. Algal Research, 2019, 42: 101617. |
35 | 胡斌, 宋理平, 冒树泉, 等. 铜藻的营养成分分析与营养学评价[J]. 广东海洋大学学报, 2015, 35(6): 100-104. |
HU Bin, SONG Liping, MAO Shuquan, et al. Nutrient analysis of sargassum horneri and its nutritional evaluation[J]. Journal of Guangdong Ocean University, 2015, 35(6): 100-104. | |
36 | 张玲, 刘平怀, 罗宁, 等. 小球藻Chlorella sorokiniana C74营养素分析[J]. 食品研究与开发, 2016, 37(10): 10-15. |
ZHANG Ling, LIU Pinghuai, LUO Ning, et al. Nutrient analysis of Chlorella sorokiniana C74[J]. Food Research and Development, 2016, 37(10): 10-15. | |
37 | 向枭, 叶元土, 周兴华, 等. 鲇胃肠道、胰脏对7种饲料蛋白质的酶解动力学[J]. 水生生物学报, 2006, 30(4): 493-498. |
XIANG Xiao, YE Yuantu, ZHOU Xinghua, et al. A comparative study of enzymolysis kinetics to common feed ingredients for Silurus asotus Linnaeus[J]. Acta Hydrobiologica Sinica, 2006, 30(4): 493-498. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[3] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[4] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[5] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[6] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[7] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[8] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[9] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[10] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[11] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[12] | 邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539. |
[13] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
[14] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
[15] | 康宇, 苟泽念. 氨基酸和DTAC对CO2水合分离动力学影响[J]. 化工进展, 2023, 42(10): 5067-5075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |