1 |
MADILINDI M A, ZISHIRI O T, DUBE B, et al. Technological advances in genetic improvement of feed efficiency in dairy cattle: a review[J]. Livestock Science, 2022, 258: 104871.
|
2 |
GOSWAMI Rahul Kumar, MEHARIYA Sanjeet, VERMA Pradeep, et al. Microalgae-based biorefineries for sustainable resource recovery from wastewater[J]. Journal of Water Process Engineering, 2021, 40: 101747.
|
3 |
邹帅, 李玉芹, 马怡然, 等. 二乙醇胺强化胶球藻Coccomyxa subellipsoidea C-169固定CO2和积累油脂[J]. 化工进展, 2021, 40(9): 5222-5230.
|
|
ZOU Shuai, LI Yuqin, MA Yiran, et al. Diethanolamine strengthening CO2 fixation and lipid accumulation in Coccomyxa subellipsoidea C-169[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5222-5230.
|
4 |
WU Y B, LI L, WEN Z G, et al. Dual functions of eicosapentaenoic acid-rich microalgae: enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens[J]. Poultry Science, 2019, 98(1): 350-357.
|
5 |
AO T, MACALINTAL L M, PAUL M A, et al. Effects of supplementing microalgae in laying hen diets on productive performance, fatty-acid profile, and oxidative stability of eggs[J]. The Journal of Applied Poultry Research, 2015, 24(3): 394-400.
|
6 |
OH S, ZHENG L, KWON H J, et al. Effects of dietary fermented chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in Pekin ducks[J]. Asian-Australasian Journal of Animal Sciences, 2014, 28(1): 95-101.
|
7 |
曹申平, 韩冬, 解绶启, 等. 螺旋藻粉替代饲料中鱼粉对异育银鲫幼鱼生长、饲料利用和蛋白沉积的影响[J]. 水生生物学报, 2016, 40(4): 647-654.
|
|
CAO Shenping, HAN Dong, XIE Shouqi, et al. Effects of dietary fishmeal replacement with spirulina platensis powder on the growth performance, feed utilization and protein deposition in juvenile gibel carp(carassis auratus gibelio var. cas)[J]. Acta Hydrobiologica Sinica, 2016, 40(4): 647-654.
|
8 |
FADL Sabreen E, ELGOHARY M S, ELSADANY Abdelgawad Y, et al. Contribution of microalgae-enriched fodder for the Nile tilapia to growth and resistance to infection with Aeromonas hydrophila [J]. Algal Research, 2017, 27: 82-88.
|
9 |
HEROLD Clemens, ISHIKA Tasneema, NWOBA Emeka G, et al. Biomass production of marine microalga Tetraselmis suecica using biogas and wastewater as nutrients[J]. Biomass and Bioenergy, 2021, 145: 105945.
|
10 |
HUSSAIN Fida, SHAH Syed Z, AHMAD Habib, et al. Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110603.
|
11 |
WANG Qingke, YU Zongyi, WEI Dong. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater[J]. Bioresource Technology, 2020, 313: 123499.
|
12 |
WANG Shikai, WANG Xu, MIAO Jing, et al. Tofu whey wastewater is a promising basal medium for microalgae culture[J]. Bioresource Technology, 2018, 253: 79-84.
|
13 |
MOHEIMANI Navid Reza, VADIVELOO Ashiwin, AYRE Jeremy Miles, et al. Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent[J]. Algal Research, 2018, 35: 362-369.
|
14 |
CHEN Chun-Yen, Enwei KUO, NAGARAJAN Dillirani, et al. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production[J]. Bioresource Technology, 2020, 302: 122814.
|
15 |
MADEIRA Marta S, CARDOSO Carlos, LOPES Paula A, et al. Microalgae as feed ingredients for livestock production and meat quality: a review[J]. Livestock Science, 2017, 205: 111-121.
|
16 |
MU Jinxiu, LI Shitian, CHEN Di, et al. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides [J]. Bioresource Technology, 2015, 185: 99-105.
|
17 |
AUSSANT Justine, Freddy GUIHÉNEUF, STENGEL Dagmar B. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae[J]. Applied Microbiology and Biotechnology, 2018, 102(12): 5279-5297.
|
18 |
张立兰, 高理想, 陈亮, 等. 体外消化法优化生长猪玉米-豆粕-DDGS饲粮和小麦-豆粕饲粮非淀粉多糖酶谱的研究[J]. 畜牧兽医学报, 2017, 48(8): 1468-1480.
|
|
ZHANG Lilan, GAO Lixiang, CHEN Liang, et al. Optimization of non-starch polysaccharide enzymes of corn-soybean-DDGS and wheat-soybean diets for growing pig using in vitro method[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(8): 1468-1480.
|
19 |
霍艳姣, 王波, 郭珊珊, 等. 鱼肉蛋白肽在模拟胃肠消化吸收过程中的抗氧化活性和生物利用度[J]. 食品工业科技, 2016, 37(6): 174-178, 186.
|
|
HUO Yanjiao, WANG Bo, GUO Shanshan, et al. Antioxidant activity and bioavailability of the Pacific cod meat peptides during simulated gastrointestinal digestion and absorption[J]. Science and Technology of Food Industry, 2016, 37(6): 174-178, 186.
|
20 |
QUIJANO Guillermo, ARCILA Juan S, Germán BUITRÓN. Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment[J]. Biotechnology Advances, 2017, 35(6): 772-781.
|
21 |
GAO Feng, YANG Ziyan, ZHAO Qiaoling, et al. Mixotrophic cultivation of microalgae coupled with anaerobic hydrolysis for sustainable treatment of municipal wastewater in a hybrid system of anaerobic membrane bioreactor and membrane photobioreactor[J]. Bioresource Technology, 2021, 337: 125457.
|
22 |
Ainoa MORILLAS-ESPAÑA, Ana SÁNCHEZ-ZURANO, LAFARGA Tomás, et al. Improvement of wastewater treatment capacity using the microalga Scenedesmus sp. and membrane bioreactors[J]. Algal Research, 2021, 60: 102516.
|
23 |
KIRCHNER Nicholas J, HAGE Adam, GOMEZ Jose, et al. Photosynthesis, competition, and wastewater treatment characteristics of the microalga Monoraphidium sp. Dek19 at cool temperatures[J]. Algal Research, 2022, 62: 102624.
|
24 |
WANG Qingke, YU Zongyi, WEI Dong, et al. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation[J]. Bioresource Technology, 2021, 333: 125151.
|
25 |
ZHOU Youcai, HE Yongjin, XIAO Xuehua, et al. A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species [J]. Bioresource Technology, 2022, 343: 125994.
|
26 |
AZAM Rifat, KOTHARI Richa, SINGH Har Mohan, et al. Cultivation of two Chlorella species in open sewage contaminated channel wastewater for biomass and biochemical profiles: comparative lab-scale approach[J]. Journal of Biotechnology, 2022, 344: 24-31.
|
27 |
WANG Yue, GUO Wanqian, YEN Hong-Wei, et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J]. Bioresource Technology, 2015, 198: 619-625.
|
28 |
TAN Xiaobo, YANG Libin, ZHANG Yalei, et al. Chlorella pyrenoidosa cultivation in outdoors using the diluted anaerobically digested activated sludge[J]. Bioresource Technology, 2015, 198: 340-350.
|
29 |
CHENG Pengfei, CHU Ruirui, ZHANG Xuezhi, et al. Screening of the dominant Chlorella pyrenoidosa for biofilm attached culture and feed production while treating swine wastewater[J]. Bioresource Technology, 2020, 318: 124054.
|
30 |
CHENG Pengfei, HUANG Jianke, SONG Xiaotong, et al. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production[J]. Bioresource Technology, 2022, 349: 126888.
|
31 |
SONG Chunfeng, LIU Jie, XIE Meilian, et al. Intensification of a novel absorption-microalgae hybrid CO2 utilization process via fed-batch mode optimization[J]. International Journal of Greenhouse Gas Control, 2019, 82: 1-7.
|
32 |
LI Yuqin, XU Hua, HAN Fangxin, et al. Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime[J]. Bioresource Technology, 2015, 192: 781-791.
|
33 |
MATOS Ângelo Paggi, CAVANHOLI Monnik Gandin, MOECKE Elisa Helena Siegel, et al. Effects of different photoperiod and trophic conditions on biomass, protein and lipid production by the marine alga Nannochloropsis gaditana at optimal concentration of desalination concentrate[J]. Bioresource Technology, 2017, 224: 490-497.
|
34 |
NICCOLAI Alberto, CHINI ZITTELLI Graziella, RODOLFI Liliana, et al. Microalgae of interest as food source: biochemical composition and digestibility[J]. Algal Research, 2019, 42: 101617.
|
35 |
胡斌, 宋理平, 冒树泉, 等. 铜藻的营养成分分析与营养学评价[J]. 广东海洋大学学报, 2015, 35(6): 100-104.
|
|
HU Bin, SONG Liping, MAO Shuquan, et al. Nutrient analysis of sargassum horneri and its nutritional evaluation[J]. Journal of Guangdong Ocean University, 2015, 35(6): 100-104.
|
36 |
张玲, 刘平怀, 罗宁, 等. 小球藻Chlorella sorokiniana C74营养素分析[J]. 食品研究与开发, 2016, 37(10): 10-15.
|
|
ZHANG Ling, LIU Pinghuai, LUO Ning, et al. Nutrient analysis of Chlorella sorokiniana C74[J]. Food Research and Development, 2016, 37(10): 10-15.
|
37 |
向枭, 叶元土, 周兴华, 等. 鲇胃肠道、胰脏对7种饲料蛋白质的酶解动力学[J]. 水生生物学报, 2006, 30(4): 493-498.
|
|
XIANG Xiao, YE Yuantu, ZHOU Xinghua, et al. A comparative study of enzymolysis kinetics to common feed ingredients for Silurus asotus Linnaeus[J]. Acta Hydrobiologica Sinica, 2006, 30(4): 493-498.
|