1 |
HOANG AT, ONG H C, FATTAH I R, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability[J]. Fuel Processing Technology, 2021, 223: 106997.
|
2 |
TAWALBEH M, AL-OTHMAN A, SALAMAH T, et al. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials[J]. Journal of Environmental Management, 2021, 299: 113597.
|
3 |
JIN Y, LIU J, YANG H, et al. Improving enzymatic saccharification and ethanol production of bamboo residues with sulfomethylation-aided phosphoric acid pretreatment[J]. Industrial Crops and Products, 2021, 170: 113733.
|
4 |
LI N, MENG F, YANG H, et al. Enhancing enzymatic digestibility of bamboo residues using a three-constituent deep eutectic solvent pretreatment[J]. Bioresource Technology, 2022, 346:126639.
|
5 |
DADA T K, SHEEHAN M, MURUGAVELH S, et al. A review on catalytic pyrolysis for high-quality bio-oil production from biomass[J]. Biomass Conversion and Biorefinery, 2021: 1-20.
|
6 |
BALASUNDRAM V, IBRAHIM N, KASMANI R M, et al. Catalytic upgrading of biomass-derived pyrolysis vapour over metal-modified HZSM-5 into BTX: A comprehensive review[J]. Biomass Conversion and Biorefinery, 2022, 12(5): 1911-1938.
|
7 |
ZHENG Y W, WANG J D, WANG D C, et al. Advanced catalytic upgrading of biomass pyrolysis vapor to bio-aromatics hydrocarbon: A review[J]. Applications in Energy and Combustion Science, 2022,10: 100061.
|
8 |
LIU R H, RAHMAN M M, SARKER M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301.
|
9 |
SERAPIGLIA M J, MULLEN C A, SMART L B, et al. Variability in pyrolysis product yield from novel shrub willow genotypes[J]. Biomass and Bioenergy, 2015, 72: 74-84.
|
10 |
TEIMOURISENDESI S M, TOWFIGHI J, KEYVANLOO K. The effect of Fe, P and Si/Al molar ratio on stability of HZSM-5 catalyst in naphtha thermal-catalytic cracking to light olefins[J]. Catalysis Communications, 2012, 27: 114-118.
|
11 |
BUTTER S A, KAEDING W W. Phosphorus-containing zeolite catalyst: US3972832[P]. 1976-08-03.
|
12 |
LIANG J, SHAN G C, SUN Y F. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110707.
|
13 |
JIN T, WANG H T, PENG J B, et al. Catalytic pyrolysis of lignin with metal-modified HZSM-5 as catalysts for monocyclic aromatic hydrocarbons production[J]. Fuel Processing Technology, 2022, 230: 107201.
|
14 |
ZHENG Y W, WANG F, YANG X Q, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169-179.
|
15 |
LI X H, CHEN L, FAN Y S, et al. Study on preparation of refined oil by upgrading of pyrolytic vapors using Zn-P/HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5): 567-574.
|
16 |
FAN Y S, HOU G X, LU D S, et al. A novel production of aromatic hydrocarbons via dielectric barrier discharge assisted one-stage pyrolysis-catalysis of biomass: Insights into modified HZSM-5 selectivity and stability[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105417.
|
17 |
KIM J W, PARK S H, JUNG J, et al. Catalytic pyrolysis of mandarin residue from the mandarin juice processing industry[J]. Bioresource Technology, 2013, 136: 431-436.
|
18 |
ZHANG L D, GAO J H, HU J X, et al. Lanthanum oxides-improved catalytic performance of ZSM-5 in toluene alkylation with methanol[J]. Catalysis Letters, 2009, 130(3/4): 355-361.
|
19 |
LIU C J, WANG H M, KARIM A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22) :7594-7623.
|
20 |
OSEKE G G, ATTA A Y, MUKHTAR B, et al. Highly selective and stable Zn-Fe/ZSM-5 catalyst for aromatization of propane[J]. Applied Petrochemical Research, 2020, 10(2): 55-65.
|
21 |
葛笑, 苟进胜. 金属改性HZSM-5催化快速热解木聚糖制备芳烃化合物[J]. 包装工程, 2021, 42(21): 105-112.
|
|
GE Xiao, GOU Jinsheng. Catalytic fast pyrolysis of xylan to aromatic compounds by metal modified HZSM-5[J]. Packaging Engineering, 2021, 42(21): 105-112.
|
22 |
HUANG M, MA Z Q, ZHOU B L, et al. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresource Technology, 2020, 30: 122754.
|
23 |
NEUMANN G T, HICKS J C. Novel hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass[J]. ACS Catalysis, 2012, 2(4): 642-646.
|
24 |
黄明, 朱亮, 马中青, 等. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报, 2021, 49(3): 292-302.
|
|
HUANG Ming, ZHU Liang, MA Zhongqing, et al. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 292-302.
|
25 |
VESES A, PUÉRTOLAS B, LÓPEZ J M, et al. Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1653-1660.
|
26 |
CHENG S Y, WEI L, ZHAO X H, et al. Conversion of prairie cordgrass to hydrocarbon biofuel over Co-Mo/HZSM-5 using a two-stage reactor system[J]. Energy Technology, 2016, 4(6): 706-713.
|
27 |
FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions[J]. Fuel, 2014, 116: 529-537.
|
28 |
LIU J N, XIANG M, WU D F. Enhanced phenol hydrodeoxygenation over a Ni catalyst supported on a mixed mesoporous ZSM-5 zeolite and Al2O3 [J]. Catalysis Letters, 2017, 147(10): 2498-2507.
|
29 |
ZHENG Y W, WANG J D, LI D H, et al. Activity and selectivity of Ni-Cu bimetallic zeolites catalysts on biomass conversion for bio-aromatic and bio-phenols[J]. Journal of the Energy Institute, 2021, 97: 58-72.
|
30 |
LIU C C, USLAMIN E A, KHRAMENKOVA E, et al. High stability of methanol to aromatic conversion over bimetallic Ca, Ga-modified ZSM-5[J]. ACS Catalysis, 2022, 12(5): 3189-3200.
|
31 |
DING K, ZHONG Z P, WANG J, et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technology, 2018, 261: 86-92.
|
32 |
YANG M F, SHAO J G, YANG H P, et al. Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dual-catalyst fixed bed reactor[J]. Bioresource Technology, 2019, 273: 77-85.
|
33 |
KARNJANAKOM S, BAYU A, HAO X G, et al. Selectively catalytic upgrading of bio-oil to aromatic hydrocarbons over Zn, Ce or Ni-doped mesoporous rod-like alumina catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2016, 421: 235-244.
|
34 |
LY H V, PARK J W, KIM S S, et al. Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil[J]. Renewable Energy, 2020, 149: 1434-1445.
|
35 |
LI Z Y, ZHONG Z P, ZHANG B, et al. Catalytic fast pyrolysis of bamboo over micro-mesoporous composite molecular sieves[J]. Energy Technology, 2018, 6(4): 728-736.
|
36 |
WANG J, ZHONG Z P, DING K, et al. Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: Study on synergistic effect of alkali metal oxides and HZSM-5[J]. Energy Conversion and Management, 2018,176: 287-298.
|
37 |
DU H R, ZHONG Z P, ZHANG B, et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of bamboo with chemical liquid deposition modified HZSM-5 to enhance aromatics production[J]. Journal of Analytical and Applied Pyrolysis, 2020,149: 104857.
|
38 |
XUE Z Y, ZHONG Z P, ZHANG B, et al. Performance of catalytic fast pyrolysis using a γ-Al2O3 catalyst with compound modification of ZrO2 and CeO2 [J]. Catalysts, 2019, 9(10): 849.
|
39 |
QUAN C, GAO N B, SONG Q B. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 84-92.
|
40 |
ZHAO C, HE J Y, LEMONIDOU A A, et al. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. Journal of Catalysis, 2011, 280(1): 8-16.
|
41 |
JAE J, TOMPSETT G A, FOSTER A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268.
|
42 |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
43 |
LI C, SUN Y F, YI Z J, et al. Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties[J]. Renewable Energy, 2022, 181: 1126-1139.
|