化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1167-1177.DOI: 10.16085/j.issn.1000-6613.2022-0809
高婷婷(), 蒋振, 吴晓毅, 郝婷婷(
), 马学虎, 温荣福
收稿日期:
2022-05-05
修回日期:
2022-06-12
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
郝婷婷
作者简介:
高婷婷(1998—),女,硕士研究生,研究方向为脉动热管性能。E-mail:gaotingting5291998@163.com。
基金资助:
GAO Tingting(), JIANG Zhen, WU Xiaoyi, HAO Tingting(
), MA Xuehu, WEN Rongfu
Received:
2022-05-05
Revised:
2022-06-12
Online:
2023-03-15
Published:
2023-04-10
Contact:
HAO Tingting
摘要:
利用11弯管的脉动热管作为汽车锂离子电池的散热系统进行传热实验。在脉动热管中引入不同比例的混合工质[H2O、全氟丁基甲基醚(HFE-7100)],在模拟单体锂离子电池不同发热功率下展开传热实验,实验结果表明,微乳液工质可以有效避免高发热功率下脉动热管出现局部烧干的现象,防止电池表面温度过高发生热失控。使用水包油(O/W)型微乳液工质(0.048%SDBS∶HFE-7100=1∶1)时传热性能最理想,并且可以保证锂离子单体电池正常工作(20~30W)时,温度不超过40℃,表面温差低于1.8℃,在单体电池高发热功率(40~50W)时,电池局部温度不超过56℃,电池表面的平均温度不超过55℃。
中图分类号:
高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177.
GAO Tingting, JIANG Zhen, WU Xiaoyi, HAO Tingting, MA Xuehu, WEN Rongfu. Experimental investigation on lithium-ion battery heat dissipation performance of oscillating heat pipe with micro-nano emulsion[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1167-1177.
物性 | HFE-7100 | 0.048%SDBS水溶液 |
---|---|---|
沸点/℃ | 61 | 100 |
熔点/℃ | -135 | 0 |
蒸汽压力/mmHg | 202(25℃) | 760(100℃) |
密度/kg·m-3 | 1520 | 1000 |
比热容/J·kg-1·K-1 | 1172 | 4125 |
表面张力/mN·m-1 | 13.6 | 33.3 |
潜热/kJ·kg-1 | 126 | 2256.7 |
黏度/Pa·s | 6.383×10-4(20℃) | 1.05×10-3(20℃) |
表1 HFE-7100和0.048%SDBS水溶液的物性参数[27-30]
物性 | HFE-7100 | 0.048%SDBS水溶液 |
---|---|---|
沸点/℃ | 61 | 100 |
熔点/℃ | -135 | 0 |
蒸汽压力/mmHg | 202(25℃) | 760(100℃) |
密度/kg·m-3 | 1520 | 1000 |
比热容/J·kg-1·K-1 | 1172 | 4125 |
表面张力/mN·m-1 | 13.6 | 33.3 |
潜热/kJ·kg-1 | 126 | 2256.7 |
黏度/Pa·s | 6.383×10-4(20℃) | 1.05×10-3(20℃) |
1 | 付畅, 吴亦枫, 章伊宁, 等. 汽车发动机余热采暖系统研究[J]. 节能, 2020, 39(9): 54-57. |
FU Chang, WU Yifeng, ZHANG Yining, et al. Study on the heating system of vehicle for combustion heat recovery[J]. Energy Conservation, 2020, 39(9): 54-57. | |
2 | 翟绍春, 于士博, 李云虹, 等. 可变换热量冷却液温控系统设计与开发[J]. 机电工程技术, 2020, 49(3): 81-83. |
ZHAI Shaochun, YU Shibo, LI Yunhong, et al. Design and development of the engine coolant temperature control system with variable heat exchange[J]. Mechanical & Electrical Engineering Technology, 2020, 49(3): 81-83. | |
3 | PESARAN A, VLAHINOS A, STUART T. Cooling and preheating of batteries in hybrid electric vehicles[C]// The 6th ASME-JSME Thermal Engineering Joint Conference, 2003. |
4 | RAMADASS P, HARAN B L, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures[J]. Journal of Power Sources, 2002, 112(2): 614-620. |
5 | 闫啸宇, 周思达, 卢宇, 等. 锂离子电池容量衰退机理与影响因素研究[J/OL]. 北京航空航天大学学报, 2022. DOI:10.13700/j.bh.1001-5965.2021.0458 . |
YAN Xiaoyu, ZHOU Sida, LU Yu, et al. Research on degradation mechanism and influencing factors on lithium-ion batteries [J]. Journal of Beijing University of Aeronautics and Astro, 2022. DOI: 10.13700/j.bh.1001-5965.2021.0458 . | |
6 | BESSELINK I J M, HEREIJGERS J A J, OORSCHOT P F, et al. Evaluation of 20000km driven with a battery electric vehicle[C]// EEVC European Electric Vehicle Congress, 2011. |
7 | 邓云. 航空运输锂离子电池热失控多米诺效应研究[D]. 天津: 中国民航大学, 2020. |
DENG Yun. Study on thermal runaway domino effect of lithium-ion batteries in air transportation[D]. Tianjin: Civil Aviation University of China, 2020. | |
8 | 朱晓庆,王震坡, WANG Hsin,等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. |
ZHU Xiaoqing, WANG Zhenpo, WANG Hsin, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. | |
9 | DENG Yuanwang, FENG Changli, Jiaqing E, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium-ion battery system: a review[J]. Applied Thermal Engineering, 2018, 142: 10-29. |
10 | 吴青平,徐荣吉,王瑞祥,等. 平板回路型脉动热管启动阶段传热特性的试验研究[J]. 制冷与空调, 2020, 20(7): 17-21. |
WU Qingping, XU Rongji, WANG Ruixiang, et al. An experimental study on operating performance of flat-plate closed-loop pulsating heat pipe in start-up period[J]. Refrigeration and Air-Conditioning, 2020, 20(7): 17-21. | |
11 | SWANEPOEL G. Thermal management of hybrid electrical vehicles using heat pipes[D]. Stellenbosch: Department of Mechanical Engineering University of Stellenbosch, 2001. |
12 | RAO Zhonghao, HUO Yutao, LIU Xinjian. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26. |
13 | WANG Qingchao, RAO Zhonghao, HUO Yutao, et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences, 2016, 102: 9-16. |
14 | CHI Riguang, CHUNG Wonsik, Seokho RHI. Thermal characteristics of an oscillating heat pipe cooling system for electric vehicle Li-ion batteries[J]. Energies, 2018, 11(3): 655. |
15 | PATEL V M, GAURAV, MEHTA H B. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe[J]. Applied Thermal Engineering, 2017, 110: 1568-1577. |
16 | HAO Tingting, MA Hongbin, MA Xuehu. Heat transfer performance of polytetrafluoroethylene oscillating heat pipe with water, ethanol, and acetone as working fluids[J]. International Journal of Heat and Mass Transfer, 2019, 131: 109-120. |
17 | 崔文宇, 蒋振, 郝婷婷, 等. 液态金属微液滴脉动热管的传热性能[J]. 化工进展, 2022, 41(1): 95-103. |
CUI Wenyu, JIANG Zhen, HAO Tingting, et al. Heat transfer performance of oscillating heat pipe with micro-nano droplets of liquid metal[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 95-103. | |
18 | SHI Saiyan, CUI Xiaoyu, HAN Hua, et al. A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures[J]. Applied Thermal Engineering, 2016, 102: 1219-1227. |
19 | ZHU Yue, CUI Xiaoyu, HAN Hua, et al. The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures[J]. International Journal of Heat & Mass Transfer, 2014, 77: 834-842. |
20 | MA H B, WILSON C, BORGMEYER B, et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe[J]. Applied Physics Letters, 2006, 88(14): 143116. |
21 | XU Yanyan, XUE Yanqi, QI Hong, et al. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119727. |
22 | 张超. 非共沸混合工质脉动热管流动及传热特性研究[D]. 北京: 北京建筑大学, 2019. |
ZHANG Chao. Study on flow and heat transfer characteristics of pulsating heat pipe with zeotropic mixtures[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019. | |
23 | XU Rongji, ZHANG Chao, CHEN Hao, et al. Heat transfer performance of pulsating heat pipe with zeotropic immiscible binary mixtures[J]. International Journal of Heat and Mass Transfer, 2019, 137: 31-41. |
24 | HAN Z H, YANG B. Thermophysical characteristics of water-in-FC72 nanoemulsion fluids[J]. Applied Physics Letters, 2008, 92(1): 013118. |
25 | 屈健, 吴慧英. 水/FC-72纳米乳液振荡热管传热特性研究[J]. 高校化学工程学报, 2012, 26(2): 210-215. |
QU Jian, WU Huiying. Experimental investigation on the heat transfer performance of a pulsating heat pipe charged with water/FC-72 nanoemulsion fluids[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(2): 210-215. | |
26 | 董志浩. 聚合物/表面活性剂混合体系对水包油乳液形成和稳定性的影响[D]. 济南: 山东大学, 2017. |
DONG Zhihao. Synergism of polymer/surfactant mixed system on the formation and stability of the oil-in-water emulsion[D]. Jinan: Shandong University, 2017. | |
27 | KHAN M Y, SAMANTA A, OJHA K, et al. Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties[J]. Asia-Pacific Journal of Chemical Engineering, 2008, 3(5): 579-585. |
28 | TACHON L, GUIGNARD S. An accurate optical method for the measurement of contact angle and interface shape of evaporative thin liquids films[J]. Experimental Thermal and Fluid Science, 2018, 90: 66-75. |
29 | ZHOU Mingzheng, XIA Guodong, LI Jian, et al. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions[J]. Experimental Thermal and Fluid Science, 2012, 36: 22-29. |
30 | 张志庆, 王芳, 任超. 电导法与最大压差法测表面活性剂临界胶束浓度实验比较[J]. 实验技术与管理, 2013, 30(1): 44-45. |
ZHANG Zhiqing, WANG Fang, REN Chao. Experimental comparison of critical micelle concentration of surfactant by conductivity method and max bubble pressure method[J]. Experimental Technology and Management, 2013, 30(1): 44-45. | |
31 | 张冉冉, 杜玉兰, 范培浩, 等. 油包水乳化体系稳定性的研究与分析[J]. 日用化学工业, 2020, 50(8): 566-571. |
ZHANG Ranran, DU Yulan, FAN Peihao, et al. Study and analysis on the stability of water-in-oil emulsions[J]. China Surfactant Detergent & Cosmetics, 2020, 50(8): 566-571. | |
32 | 夏纪鼎, 朱震和. 表面活性物基础物理化学 第三讲 表面活性物对乳状液稳定性的影响及其HLB值[J]. 日用化学工业, 1979, 9(4): 52-60. |
XIA Jiding, ZHU Zhenhe. Basic physical chemistry of surfactants, lecture 3, influence of surfactants on emulsion stability and its HLB value[J]. China Surfactant Detergent & Cosmetics, 1979, 9(4): 52-60. | |
33 | FRIBERG S, MANDELL L. Phase equilibria and their influence on the properties of emulsions[J]. Journal of the American Oil Chemists Society, 1970, 47(5): 149-152. |
34 | YANG B, HAN Z H. Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids[J]. Applied Physics Letters, 2006, 88(26): 261914. |
35 | NASIR F M, ABDULLAH M Z, ISMAIL M A. Experimental investigation of water-cooled heat pipes in the thermal management of lithium-ion EV batteries[J]. Arabian Journal for Science and Engineering, 2019, 44(9): 7541-7552. |
36 | WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60. |
[1] | 惠博, 侯宏艺, 张涛, 车生文. 圆柱形环状脉动热管烧干特性[J]. 化工进展, 2023, 42(S1): 33-40. |
[2] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[3] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[4] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[5] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[6] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[7] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[8] | 余俊声, 朱晔, 李乾坤, 徐士轩, 张昕阳, 汪城, 屈健. 升降热流条件下的脉动热管性能[J]. 化工进展, 2023, 42(3): 1178-1186. |
[9] | 杨茂飞, 李金旺, 周刘伟. 亲水改性超薄平板热管传热性能[J]. 化工进展, 2023, 42(2): 692-698. |
[10] | 姚稳, 张雨晨, 滕文馨, 黎江玲. 表面活性剂对制备Ca掺杂β-In2S3微观结构的影响及其光催化降解甲基橙性能[J]. 化工进展, 2023, 42(2): 774-782. |
[11] | 毕强, 梅毅, 夏举佩. 磷Ⅱ型无水石膏制备及活性联合激发基础研究[J]. 化工进展, 2023, 42(10): 5427-5435. |
[12] | 邓权龙, 丁厚成, 徐远迪, 蒋仲安, 杨岚, 孙雪霏. 表面活性雾滴联合金属网栅增效除尘[J]. 化工进展, 2023, 42(1): 546-552. |
[13] | 张清清, 毕海普, 舒中俊, 欧红香, 王尚彬, 王钧奇, 潘煜. 泡沫灭火剂中全氟辛烷磺酸类物质的管控行为及替代物研究进展[J]. 化工进展, 2022, 41(S1): 340-350. |
[14] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[15] | 张艺夕, 张丰润泽, 桑宇彤, 郑憬希, 刘学敏, 张华, 张鹏. 适合北方冬季施工的清洁压裂液应用现状及思考[J]. 化工进展, 2022, 41(9): 5003-5010. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 《化工进展》编辑部 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |