化工进展 ›› 2019, Vol. 38 ›› Issue (11): 5057-5065.DOI: 10.16085/j.issn.1000-6613.2019-0334
赵海田1(),李旭东1,曹凤芹2,3,倪艳2,3,姚磊2,3()
收稿日期:
2019-03-07
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
姚磊
作者简介:
赵海田(1979—),男,副教授,博士,研究方向为天然产物化学。E-mail:基金资助:
Haitian ZHAO1(),Xudong LI1,Fengqin CAO2,3,Yan NI2,3,Lei YAO2,3()
Received:
2019-03-07
Online:
2019-11-05
Published:
2019-11-05
Contact:
Lei YAO
摘要:
壳聚糖纳米粒子载药体系因其天然无毒、生物相容性高、可生物降解等特点,在生物医学、化工和食品等领域有广阔的应用前景。本文对制备壳聚糖纳米粒子的离子交联法、聚电解质复合法、乳化交联法、喷雾干燥法和溶剂蒸发法等主要方法进行了综述,并阐述了其制备原理和优缺点。此外,本文结合国内外学者近期的研究工作,综述了壳聚糖纳米粒子载药体系在抗肿瘤药物和抑菌药物方面的应用研究进展,并对壳聚糖装载降糖药物、降脂药物、治疗骨质疏松药物和抗癫痫药物应用进行了简介。最后结合壳聚糖纳米载药体系在制备方法及应用中存在的实际问题,提出多学科研究相结合,开发壳聚糖纳米载药体系的智能控释、靶向递送功能和突破人体特殊生物屏障功能将是其近期的重点研究方向。
中图分类号:
赵海田,李旭东,曹凤芹,倪艳,姚磊. 基于壳聚糖纳米粒子载药体系的制备与应用研究进展[J]. 化工进展, 2019, 38(11): 5057-5065.
Haitian ZHAO,Xudong LI,Fengqin CAO,Yan NI,Lei YAO. Advances in preparation and application of chitosan-based nanoparticles for drug delivery system[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5057-5065.
方法 | 优点 | 局限性 |
---|---|---|
离子交联法 | 操作方便,反应条件温和,完全在水溶液中进行, 有利于保持所包封物质的活性 | 通过弱物理相互作用力形成交联,稳定性相对较差 |
聚电解质复合法 | 反应条件温和,避免了有机溶剂的使用和其他物质的 引入,纳米粒子在本质上是自发形成的 | 纳米级的聚电解质络合物胶束必须在很稀的浓度下才能形成;机械强度差、降解速度快 |
乳化交联法 | 稳定性好,药物释放平稳、缓慢 | 所用的交联剂通常带有毒性,如有残留对有机体不利;内在不可切割的 共价交联阻碍了在靶点部位的药物释放与扩散 |
喷雾干燥法 | 操作简单,易于工业化生产 | 雾化操作时,芯材暴露于高温环境中易被氧化;囊壁易形成空隙,导致微囊致密性较差,囊壁易于坍塌 |
溶剂蒸发法 | 条件温和,适用于疏水性药物 | 处理条件要求较高,过程伴随高剪切力处理;需使用有机溶剂 |
表1 常见壳聚糖纳米例子制备方法及特点
方法 | 优点 | 局限性 |
---|---|---|
离子交联法 | 操作方便,反应条件温和,完全在水溶液中进行, 有利于保持所包封物质的活性 | 通过弱物理相互作用力形成交联,稳定性相对较差 |
聚电解质复合法 | 反应条件温和,避免了有机溶剂的使用和其他物质的 引入,纳米粒子在本质上是自发形成的 | 纳米级的聚电解质络合物胶束必须在很稀的浓度下才能形成;机械强度差、降解速度快 |
乳化交联法 | 稳定性好,药物释放平稳、缓慢 | 所用的交联剂通常带有毒性,如有残留对有机体不利;内在不可切割的 共价交联阻碍了在靶点部位的药物释放与扩散 |
喷雾干燥法 | 操作简单,易于工业化生产 | 雾化操作时,芯材暴露于高温环境中易被氧化;囊壁易形成空隙,导致微囊致密性较差,囊壁易于坍塌 |
溶剂蒸发法 | 条件温和,适用于疏水性药物 | 处理条件要求较高,过程伴随高剪切力处理;需使用有机溶剂 |
1 | SHARIATINIAZ. Carboxymethyl chitosan: properties and biomedical applications[J]. International Journal of Biological Macromolecules B, 2018, 120: 1406-1419. |
2 | 王志华, 江阳阳, 余晓华, 等. 壳聚糖及其水溶性衍生物对小鼠免疫功能的影响[J]. 食品科学, 2016, 37(1): 198-202. |
WANGZ H, JIANGY Y, YUX H, et al. Effect of chitosan and its water-soluble derivatives on immune function in mice[J]. Food Science, 2016, 37(1): 198-202. | |
3 | QINC Q, DUY M, XIAOL. Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan[J]. Polymer Degradation and Stability, 2002, 76(2): 211-218. |
4 | RINAUDOM. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006, 31(7): 603-632. |
5 | DUARTEM L, FERREIRAM C, MARVÃOM R, et al. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy[J]. International Journal of Biological Macromolecules, 2002, 31(2/3/4): 1-8. |
6 | LEGRANDP, ROMEROE A, COHENB E, et al. Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes[J]. Antimicrobial Agents and Chemotherapy, 1992, 36(11): 2518-2522. |
7 | TAJMIR-RIAHIH A, NAFISIS, SANYAKAMDHORNS, et al. Applications of chitosan nanoparticles in drug delivery[J]. Methods in Molecular Biology, 2014, 1141: 165-184. |
8 | SHEPHERDR, READERS, FALSHAWA. Chitosan functional properties[J]. Glycoconjugate Journal, 1997, 14(4): 535-542. |
9 | DESAIK G. Chitosan nanoparticles prepared by ionotropic gelation: an overview of recent advances[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33(2): 107-158. |
10 | MOUSAVIS A, GHOTASLOUR, KORDIS, et al. Antibacterial and antifungal effects of chitosan nanoparticles on tissue conditioners of complete dentures[J]. International Journal of Biological Macromolecules, 2018, 118: 881-885. |
11 | 吴益栋, 沈志森, 王幸媛, 等. 壳聚糖基纳米载药系统的制备及其在肿瘤靶向治疗中的应用研究[J]. 药物生物技术, 2018, 25(4): 333-339. |
WUY D, SHENZ S, WANGX Y, et al. The preparation and targeted therapy on tumor of chitosan-based nanoparticle drug system[J]. Pharmaceutical Biotechnology, 2018, 25(4): 333-339. | |
12 | 康宁, 刘长霞, 范小振. 壳聚糖基壁材在精油/鱼油微胶囊化方面的应用进展[J]. 化工进展, 2019, 38(3): 1509-1516. |
KANGN, LIUC X, FANX Z. Application progress of chitosan-based wall materials on microencapsulation of essential/fish oil[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1509-1516. | |
13 | 欧歌, 廖德华, 张凯, 等. 采用离子交联法制备壳聚糖胰岛素纳米粒的研究进展[J]. 中南药学, 2013, 11(2): 116-119, 156. |
OU G, LIAOD H, ZHANGK, et al. Progress in the preparation of chitosan insulin nanoparticles by ion crosslinking[J]. Central South Pharmacy, 2013, 11(2): 116-119, 156. | |
14 | LUOY C, WANGQ. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery[J]. International Journal of Biological Macromolecules, 2014, 64(3): 353-367. |
15 | NASKARS, SHARMAS, KOUTSUK. Chitosan-based nanoparticles: an overview of biomedical applications and its preparation[J]. Journal of Drug Delivery Science and Technology, 2019, 49: 61-68. |
16 | POLKA, AMSDENB, YAOK D, et al. Controlled release of albumin from chitosan-alginate microcapsules[J]. Journal of Pharmaceutical Sciences, 1994, 83(2): 178-185. |
17 | LIUL S, LIUS Q, NG S Y, et al. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres[J]. Journal of Controlled Release, 1997, 43(1): 65-74. |
18 | JAINA, THAKURK, SHARMAG, et al. Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles[J]. Carbohydrate Polymers, 2016, 137: 65-74. |
19 | ELSAYEDA, ALREMAWIM, QINNAN, et al. Chitosan-Sodium lauryl sulfate nanoparticles as a carrier system for the invivo delivery of oral insulin[J]. AAPS Pharmscitech, 2011, 12(3): 958-964. |
20 | SADEGHIA M, DORKOOSHF A, AVADIM R, et al. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods[J]. International Journal of Pharmaceutics, 2008, 355(1): 299-306. |
21 | 郭渊, 王晓焕, 谢海燕. 壳聚糖-聚乙烯醇-海藻酸钠聚电解质复合膜的制备及吸水性能研究[J]. 新疆农业大学学报, 2017, 40(3): 198-203. |
GUOY, WANGX H, XIEH Y. Preparation and water absorption properties of chitosan polyvinyl alcohol sodium alginate polyelectrolyte composite membrane[J]. Journal of Xinjiang Agricultural University, 2017, 40(3): 198-203. | |
22 | 邓联东. 壳聚糖/聚谷氨酸键接阿霉素聚电解质复合纳米粒的研究[C]//2013医学前沿论坛暨第十三届全国肿瘤药理与化疗学术会议. 洛阳: 中国抗癌协会抗癌药物专业委员会, 2013. |
DENGL D. Study on chitosan/polyglutamic acid conjugated adriamycin polyelectrolyte composite nanoparticles[C]//2013 Medical Frontiers BBS and Proceedings of the 13th National Conference on oncology Pharmacology and Chemotherapy. Luoyang: Professional Committee of Oncology, Chinese Anti-Cancer Association, 2013. | |
23 | 赵婧, 苗艳青, 梁飞, 等. 温度/pH双重响应型壳聚糖纳米药物载体的制备及性能[J]. 功能材料, 2017, 48(8): 190-196. |
ZHAOJ, MIAOY Q, LIANGF, et al. Preparation and properties of temperature and pH sensitive chitosan nanoparticles as drug delivery system[J]. Journal of Functional Materials, 2017, 48(8): 190-196. | |
24 | NAGPALK, KUMARS K, MISHRAD N. Chitosan nanoparticles: a promising system in novel drug delivery[J]. Chemical and Pharmaceutical Bulletin, 2010, 58(11): 1423-1430. |
25 | 马莉华, 于炜婷, 马小军. 壳聚糖-海藻酸聚电解质复合膜(Ⅰ)激光共聚焦扫描显微镜分析形貌[J]. 膜科学与技术, 2005, 25(2): 30-33. |
MAL H, YUW T, MAX J. Chitosan-alginate polyelectrolyte complex membrane (Ⅰ) topography analysis by laser confocal scanning microscopy[J]. Membrane Science and Technology, 2005, 25(2): 30-33. | |
26 | 罗坤. PGA基聚电解质的静电络合、层层自组装及药物载体构建[D]. 上海: 上海大学, 2009. |
LUOK. Complexation, layer-by-layer assembly and drug carrier fabrication of polyelectrolytes based on poly(α, L-glutamic acid)[D]. Shanghai: Shanghai University, 2009. | |
27 | 刘慧. 壳聚糖微球/纳米粒的制备及其性能研究[D]. 杭州: 浙江大学, 2007. |
LIUH. Preparation and characterization of chitosan microspheres/nanoparticles[D]. Hangzhou: Zhejiang University, 2007. | |
28 | JIAD, WANGD, WUH, et al. Preparation and adsorption properties of magnetic Co0.5Ni0.5Fe2O4-chitosan nanoparticles[J]. Russian Journal of General Chemistry, 2016, 86(3): 691-695. |
29 | 邵丽, 邓阳全, 吴旭, 等. 载药壳聚糖缓释微球的制备及其释放研究[J]. 功能材料, 2009, 40(6): 959-961. |
SHAOL, DENGY Q, WUX, et al. Prepare and release of the chitosan sustained-release drug microspheres[J]. Journal of Functional Materials, 2009, 40(6): 959-961. | |
30 | MIF L, TANY C, LIANGH F, et al. Invivo biocompatibility and degradability of a novel injectable-chitosan-based implant[J]. Biomaterials, 2002, 23(1): 181-191. |
31 | RIEGGERB R, BAURERB, MIRZAYEVAA, et al. A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment[J]. Carbohydrate Polymers, 2018, 180: 46-54. |
32 | LIUZ, JIAOY, WANGY, et al. Polysaccharides-based nanoparticles as drug delivery systems[J]. Advanced Drug Delivery Reviews, 2008, 60(15): 1650-1662. |
33 | 崔青, 赵红, 张长桥, 等. 壳聚糖功能微球负载贵金属的研究进展[J]. 化工进展, 2017, 36(2): 595-601. |
CUIQ, ZHAOH, ZHANGC Q, et al. Research progress in noble metal-supported chitosan functional microspheres[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 595-601. | |
34 | 王雅萍. 几种中药活性成分载药纳米微球的制备及其生物活性研究[D]. 武汉: 武汉工程大学, 2015. |
WANGY P. Preparation and biological activity of several nano/microspheres contain the active ingredients from traditional Chinese medicine[D]. Wuhan: Wuhan Institute of Technology, 2015. | |
35 | 沈玲玲. 不同微胶囊化叶黄素理化性质及其应用[D]. 无锡: 江南大学, 2012. |
SHENL L. Study on the physicochemical properties and applications of microcapsulated lutein prepared by different methods[D]. Wuxi: Jiangnan University, 2012. | |
36 | MORLANDOA H, SENCADASV, CARDIIIOD, et al. Suppression of the photocatalytic activity of TiO2 nanoparticles encapsulated by chitosan through a spray-drying method with potential for use in sunblocking applications[J]. Powder Technology, 2018, 329: 252-259. |
37 | 秦倩. 壳聚糖/羧甲基壳聚糖自组装体系的构建与释药性能研究[D]. 郑州: 郑州大学, 2018. |
QINQ. Study on self-assembly mechanism of chitosan/carboxymethyl chitosan and drug release performance [D]. Zhengzhou: Zhengzhou University, 2018. | |
38 | 李鸿, 卓芸芸. 负载药物纳米粒子制备方法和应用的研究进展[J]. 广东化工, 2013, 40(8): 86-71. |
LIH, ZHUOY Y. Research of drug-loaded nanoparticles preparation methods and application[J]. Guangdong Chemical Industry, 2013, 40(8): 86-71. | |
39 | ALI A, AHMEDS. A review on chitosan and its nanocomposites in drug delivery[J]. International Journal of Biological Macromolecules, 2018, 109: 273-286. |
40 | GEORGEM, ABRAHAMT E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan: a review[J]. Journal of Controlled Release, 2006, 5(6): 1-14. |
41 | DINGF Y, LIH B, DUY M, et al. Recent advances in chitosan-based self-healing materials[J]. Research on Chemical Intermediates, 2018, 44(8): 4827-4840. |
42 | PATELM, SHAHT, AMINA. Therapeutic opportunities in colon specific drug delivery system[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24(2): 147-202. |
43 | 车秋凌, 李明春, 辛梅华. 壳聚糖及其衍生物在天然织物整理中的应用研究进展[J]. 化工进展, 2018, 37(11): 4330-4336. |
CHEQ L, LIM C, XINM H. Research progress of chitosan and its derivatives in natural fabric finishing[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4330-4336. | |
44 | SHANGY, DINGF Y, LIUJ, et al. Dual-drug release from chitin-based core-shell microspheres fabricated by coaxial electrospray[J]. Advances in Polymer Technology, 2018, 37(5): 1366-1373. |
45 | 冯作明, 戴晓雁, 丁晓霞. 抗肿瘤抗生素药物化疗引起恶心、呕吐的治疗对策[J]. 中国抗生素杂志, 2011, 36(7): 2-5. |
FENGZ M, DAIX Y, DINGX X. Anti-tumor antibiotic chemotherapy caused nausea, vomiting treatment countermeasures[J]. Chinese Journal of Antibiotics, 2011, 36(7): 2-5. | |
46 | KARIMIM H, MAHDAVINIAG R, MASSOUMIB. pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with K-carrageenan[J]. Materials Science and Engineering C, 2018, 91: 705-714. |
47 | GUOX L, ZHUANGQ F, JIT J, et al. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer[J]. Carbohydrate Polymers, 2018, 195: 311-320. |
48 | SALARR K, KUMARN. Synthesis and characterization of vincristine loaded folic acid-chitosan conjugated nanoparticles[J]. Resource-Efficient Technologies, 2016, 2(4): 199-214. |
49 | MEHATAA K, BHARTIS, SINGHP, et al. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy[J]. Colloids and Surfaces B: Biointerfaces, 2019, 173: 366-377. |
50 | 姚文杰, 辛梅华, 李明春, 等. pH值响应聚乙二醇化壳聚糖基隐形纳米胶束的制备及其载药性能[J]. 化工进展, 2015, 34(1): 173-177,223. |
YAOW J, XINM H, LIM C, et al. pH-responsive PEGylated nanoparticles based on dilauryl chitosan: preparation, physicochemical characterization and invitro evaluation[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 173-177,223. | |
51 | 林水森, 李明春, 辛梅华, 等. 壳聚糖及其衍生物抗菌机理研究进展[J].化学通报, 2014, 77(3): 220-226. |
LINS S, LIM C, XINM H, et al. Progress in antimicrobial mechanism of chitosan and its derivatives[J]. Chemistry, 2014, 77(3): 220-226. | |
52 | 李玮, 李明春, 辛梅华. 糠醛改性O-季铵化壳聚糖衍生物的合成及其抗菌性能[J]. 化工进展, 2014, 33(4): 966-970,987. |
LIW, LIM C, XINM H. Synthesis and antibacterial properties of furfural modified chitosan derivatives[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 966-970,987. | |
53 | 陈燕燕, 李明春, 辛梅华, 等. 海因改性N-季铵化壳聚糖衍生物的合成及其抗菌性能[J]. 化工进展, 2015, 34(1): 188-192,233. |
CHENY Y, LIM C, XINM H, et al. Synthesis and antibacterial research of hydantoin modified quaternary ammonium chitosan[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 188-192, 233. | |
54 | 俞娟, 徐俊华, 范一民. 壳聚糖抗菌性能研究进展[J]. 林业工程学报, 2018, 3(5): 20-27. |
YUJ, XUJ H, FANY M. A review of antibacterial properties of chitosan[J]. Journal of Forestry Engineering, 2018, 3(5): 20-27. | |
55 | MATSHETSHEK I, PARANIS, MANKIiS M, et al. Preparation, characterization and invitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil[J]. International Journal of Biological Macromolecules A, 2018, 118: 676-682. |
56 | HASHEMINEJADN, KHODAIYANF, SAFARIM. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles[J]. Food Chemistry, 2019, 275: 113-122. |
57 | EL-FEKYG S, SHARAFS S, SHAFEIA E, et al. Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing[J]. Carbohydrate Polymers, 2017, 158: 11-19. |
58 | ABDELKADERA, EL-MOKHTARM A, ABDELKADERO, et al. Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model[J]. Carbohydrate Polymers, 2017, 174: 1041-1050. |
59 | LIH X, ZHANGZ, BAOX Y, et al. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery[J]. Colloids and Surfaces B: Biointerfaces, 2018, 170: 136-143. |
60 | HIRPARAM R, MANIKKATHJ, SIVAKUMARK, et al. Long circulating PEGylated-chitosan nanoparticles of rosuvastatin calcium: development and in vitro and in vivo evaluations [J]. International Journal of Biological Macromolecules B, 2018, 107: 2190-2200. |
61 | MILADIK, SFARS, FESSIH, et al. Enhancement of alendronate encapsulation in chitosan nanoparticles[J]. Journal of Drug Delivery Science and Technology B, 2015, 30: 391-396. |
62 | LIUS S, YANGS L, HO P C. Intranasal administration of carbamazepineloaded carboxymethyl chitosan nanoparticles for drug delivery to the brain[J]. Asian Journal of Pharmaceutical Sciences, 2018, 13(1): 72-81. |
63 | 毛扬帆, 李明春, 辛梅华. O-磺化/O-季铵化-N,N-双烷基壳聚糖混合单分子膜及自组装囊泡性质[J]. 化工进展, 2015, 34(5): 1365-1370. |
MAOY F, LIM C, XINM H. Mixed monolayers and self-assembly vesicles of O-sulfonated-N,N-dilauryl chitosan/O-quaternized-N,N-dilauryl chitosan [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1365-1370. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[3] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[4] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[5] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[6] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[7] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[8] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[9] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[10] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[11] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[12] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[13] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[14] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[15] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |