化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1448-1456.DOI: 10.16085/j.issn.1000-6613.2022-0787
收稿日期:
2022-04-29
修回日期:
2022-05-27
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
杨婷婷
作者简介:
薛博(1995—),男,硕士研究生,研究方向为灾害防治理论与技术。E-mail:bogege0530@163.com。
基金资助:
XUE Bo(), YANG Tingting(), WANG Xuefeng
Received:
2022-04-29
Revised:
2022-05-27
Online:
2023-03-15
Published:
2023-04-10
Contact:
YANG Tingting
摘要:
聚苯胺具有良好的氧化还原性和环境稳定性以及优异的导电性,是一种良好的气敏材料。但是聚苯胺的共轭离域结构使其在中性和碱性环境中的应用受到制约。碳纳米管具有比表面积大、可在常温下表现出对于不同气体良好的吸附能力的特点,但是单纯的碳纳米管对气体的吸附选择性较差。文章主要介绍了采取金属、金属氧化物或者聚合物掺杂等不同手段改性的聚苯胺、碳纳米管以及聚苯胺/碳纳米管复合材料分别作为气敏材料的气敏性能及气敏机理的研究进展,得出经过改性的聚苯胺/碳纳米管复合材料具备更加优良的气敏特性,但也指出存在复合材料各部分协同作用机理尚不明确,除氨气外其余气体的气敏反应机理研究较少的问题,提出未来应进一步探索复合材料气敏反应机理与复合材料各部分的协同作用机制,设计出所需要材料的分子结构,进而有针对性地对聚苯胺和碳纳米管进行功能化掺杂,合成优良的复合气敏材料。
中图分类号:
薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456.
XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456.
1 | 宋晓岚, 闫程印, 张颖, 等. 气敏材料的研究进展及展望[J]. 材料导报, 2012, 26(11): 36-39, 44. |
SONG Xiaolan, YAN Chengyin, ZHANG Ying, et al. Research progress and prospect of gas sensitive materials[J]. Materials Review, 2012, 26(11): 36-39, 44. | |
2 | 周媛媛, 余旻, 李松, 等. 导电高分子材料聚苯胺的研究进展[J]. 化学推进剂与高分子材料, 2007, 5(6): 14-19. |
ZHOU Yuanyuan, YU Min, LI Song, et al. Research progress of the conductive polymer material—Polyaniline[J]. Chemical Propellants & Polymeric Materials, 2007, 5(6): 14-19. | |
3 | 曹友桂, 章于川, 郑广鹏. 导电聚苯胺复合材料的研究进展[J]. 广东化工, 2012, 39(2): 84, 56. |
CAO Yougui, ZHANG Yuchuan, ZHENG Guangpeng. The research progress on conductive polymer of polyaniline composites[J]. Guangdong Chemical Industry, 2012, 39(2): 84, 56. | |
4 | 包建文. 碳纳米管增强聚合物基复合材料进展[J]. 中国材料进展, 2009, 28(6): 19-27. |
BAO Jianwen. Advance in polymer matrix nanocomposite reinforced by carbon nanotubes[J]. Materials China, 2009, 28(6): 19-27. | |
5 | 李丹丹. 聚苯胺/碳纳米管复合材料的制备及性能研究[D]. 天津: 河北工业大学, 2010. |
LI Dandan. Study on preparation and performance of polyaniline/carbon nanotube composites[D]. Tianjin: Hebei University of Technology, 2010. | |
6 | 章家立, 甘维. 聚苯胺/碳纳米管复合材料的研究进展[J]. 中国塑料, 2013, 27(10): 1-5. |
ZHANG Jiali, GAN Wei. Research progress of polyaniline/carbon nanotube composites[J]. China Plastics, 2013, 27(10): 1-5. | |
7 | HIRATA M, SUN L Y. Characteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas[J]. Sensors and Actuators A: Physical, 1994, 40(2): 159-163. |
8 | 谢英男, 詹自力, 张红芹, 等. 十二烷基苯磺酸掺杂聚苯胺的气敏性能研究[J]. 电子元件与材料, 2008, 27(3): 5-8. |
XIE Yingnan, ZHAN Zili, ZHANG Hongqin, et al. Study on gas-sensing properties of dodecylbenzenesulfonic acid doped polyaniline[J]. Electronic Components and Materials, 2008, 27(3): 5-8. | |
9 | HUANG J X, KANER R B. Nanofiber formation in the chemical polymerization of aniline: a mechanistic study[J]. Angewandte Chemie International Edition, 2004, 43(43): 5817-5821. |
10 | RIZZO G, ARENA A, DONATO N, et al. Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films[J]. Thin Solid Films, 2010, 518(23): 7133-7137. |
11 | HUANG J X, VIRJI S, WEILLER B H, et al. Polyaniline nanofibers: facile synthesis and chemical sensors[J]. Journal of the American Chemical Society, 2003, 125(2): 314-315. |
12 | VIRJI S, HUANG J X, KANER R B, et al. Polyaniline nanofiber gas sensors: examination of response mechanisms[J]. Nano Letters, 2004, 4(3): 491-496. |
13 | 孙凡. 电纺聚苯胺纳米纤维传感器的制备及其气敏性研究[D]. 杭州: 浙江大学, 2015. |
SUN Fan. Preparation and study on gas sensing of PANI nanofiber sensor based on electrospinning[D]. Hangzhou: Zhejiang University, 2015. | |
14 | 徐子谦. 无机化学前沿综述[J]. 当代化工研究, 2017(4): 13-15. |
XU Ziqian. Frontier review of inorganic chemistry[J]. Modern Chemical Research, 2017(4): 13-15. | |
15 | TAI Huiling, JIANG Yadong, XIE Guangzhong, et al. Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film[J]. Sensors and Actuators B: Chemical, 2007, 125(2): 644-650. |
16 | ABACI S, NESSARK B, RIAHI F. Preparation and characterization of polyaniline+TiO2 composite films[J]. Ionics, 2014, 20(12): 1693-1702. |
17 | RAM M K, YAVUZ Ö, LAHSANGAH V, et al. CO gas sensing from ultrathin nano-composite conducting polymer film[J]. Sensors and Actuators B: Chemical, 2005, 106(2): 750-757. |
18 | 朱涛, 常燕, 段力峰, 等. 聚苯胺-TiO2复合膜的气敏性能研究[J]. 材料开发与应用, 2020, 35(4): 1-5. |
ZHU Tao, CHANG Yan, DUAN Lifeng, et al. Research on gas sensing properties of PANI-TiO2 composite film[J]. Development and Application of Materials, 2020, 35(4): 1-5. | |
19 | 崔艳雷, 张铭, 李雪伟, 等. 柔性PANI-SnO2复合薄膜的制备及其对NH3的气敏特性[J]. 微纳电子技术, 2019, 56(7): 570-574, 592. |
CUI Yanlei, ZHANG Ming, LI Xuewei, et al. Preparation and NH3 gas sensing properties of PANI-SnO2 flexible composite film[J]. Micronanoelectronic Technology, 2019, 56(7): 570-574, 592. | |
20 | 戚暨. 苯胺原位聚合法制备气敏织物及其气体传感性能研究[D]. 沈阳: 东北大学, 2013. |
QI Ji. Preparation of gas sensitive fabrics through in situ polymerization of aniline and its gas sensing property[D]. Shenyang: Northeastern University, 2013. | |
21 | LI Z F, BLUM F D, BERTINO M F, et al. One-step fabrication of a polyaniline nanofiber vapor sensor[J]. Sensors and Actuators B: Chemical, 2008, 134(1): 31-35. |
22 | ATHAWALE A A, BHAGWAT S V, KATRE P P. Nanocomposite of Pd-polyaniline as a selective methanol sensor[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 263-267. |
23 | WU Zuquan, CHEN Xiangdong, ZHU Shibu, et al. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite[J]. Sensors and Actuators B: Chemical, 2013, 178: 485-493. |
24 | 田俊峰, 陈哲, 韩光鲁, 等. 三维石墨烯/聚苯胺纳米线复合材料合成及室温气敏性能[J]. 化工新型材料, 2019, 47(3): 51-54. |
TIAN Junfeng, CHEN Zhe, HAN Guanglu, et al. Preparation of 3D-rGO/PANI nanofiber and its H2 sensitivity at room temperature[J]. New Chemical Materials, 2019, 47(3): 51-54. | |
25 | ZHANG T, MUBEEN S, MYUNG N V, et al. Recent progress in carbon nanotube-based gas sensors[J]. Nanotechnology, 2008, 19(33): 332001. |
26 | BONDAVALLI P, LEGAGNEUX P, PRIBAT D. Carbon nanotubes based transistors as gas sensors: state of the art and critical review[J]. Sensors and Actuators B: Chemical, 2009, 140(1): 304-318. |
27 | KANIYOOR A, IMRAN JAFRI R, AROCKIADOSS T, et al. Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor[J]. Nanoscale, 2009, 1(3): 382-386. |
28 | ASAD M, SHEIKHI M H. Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles[J]. Sensors and Actuators B: Chemical, 2014, 198: 134-141. |
29 | KONG Jing, FRANKLIN N R, ZHOU Chongwu, et al. Nanotube molecular wires as chemical sensors[J]. Science, 2000, 287(5453): 622-625. |
30 | GOLDONI A, LARCIPRETE R, PETACCIA L, et al. Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring[J]. Journal of the American Chemical Society, 2003, 125(37): 11329-11333. |
31 | PENG Shu, CHO Kyeongjae. Ab initio study of doped carbon nanotube sensors[J]. Nano Letters, 2003, 3(4): 513-517. |
32 | 杨俊卿, 魏忠, 李鸿波. 功能化单壁碳纳米管的气敏性研究[J]. 武汉理工大学学报, 2012, 34(4): 5-7. |
YANG Junqing, WEI Zhong, LI Hongbo. Sensing behavior of functionalized single-walled carbon nanotubes[J]. Journal of Wuhan University of Technology, 2012, 34(4): 5-7. | |
33 | ESPINOSA E H, IONESCU R, BITTENCOURT C, et al. Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing[J]. Thin Solid Films, 2007, 515(23): 8322-8327. |
34 | KUMAR M K, RAMAPRABHU S. Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2518-2526. |
35 | KAUR BILLING B, AGNIHOTRI P K, SINGH N. Fabrication of branched nanostructures for CNT@Ag nano-hybrids: application in CO2 gas detection[J]. Journal of Materials Chemistry C, 2017, 5(17): 4226-4235. |
36 | 史克英, 陈垒, 李丽, 等. MWCNTs/SnO2复合材料的制备及室温NO气敏性研究[J]. 黑龙江大学自然科学学报, 2011, 28(4): 490-497. |
SHI Keying, CHEN Lei, LI Li, et al. Preparation of multi-walled carbon nanotubes-SnO2 composite and its gas sensor properties for NO detection at room temperature[J]. Journal of Natural Science of Heilongjiang University, 2011, 28(4): 490-497. | |
37 | 陕皓, 张晓波, 刘丽, 等. 掺多壁碳纳米管的ZnO对乙醇的气敏性能[J]. 功能材料, 2012, 43(24): 3460-3462. |
SHAN Hao, ZHANG Xiaobo, LIU Li, et al. Ethanol sensing properties of multiwalled carbon nanotube-doped ZnO[J]. Journal of Functional Materials, 2012, 43(24): 3460-3462. | |
38 | WONGCHOOSUK C, WISITSORAAT A, PHOKHARATKUL D, et al. Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing[J]. Sensors, 2010, 10(8): 7705-7715. |
39 | LI W, HOA N D, KIM D. High-performance carbon nanotube hydrogen sensor[J]. Sensors and Actuators B: Chemical, 2010, 149(1): 184-188. |
40 | LIU Bohao, LIU Xueyan, YUAN Zhen, et al. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature[J]. Sensors and Actuators B: Chemical, 2019, 295: 86-92. |
41 | WANG H C, LI Y, YANG M J. Sensors for organic vapor detection based on composites of carbon nonotubes functionalized with polymers[J]. Sensors and Actuators B: Chemical, 2007, 124(2): 360-367. |
42 | 梁嘉敏. 导电高分子聚苯胺及其复合材料的制备和气敏性研究[D]. 沈阳: 东北大学, 2020. |
LIANG Jiamin. Preparation and gas sensitivity of conductive polymer polyaniline and its composites[D]. Shenyang: Northeastern University, 2020. | |
43 | 张广迪. 一氧化碳传感器的制备及特性研究[D]. 成都: 电子科技大学, 2014. |
ZHANG Guangdi. The fabrication of carbon monoxide sensor and study on its performance[D]. Chengdu: University of Electronic Science and Technology of China, 2014. | |
44 | 樊桂君. 氧化钨纳米片、碳纳米管改性聚苯胺复合材料的室温氨敏性能研究[D]. 郑州: 郑州大学, 2020. |
FAN Guijun. Room-temperature ammonia-sensing properties of the polyaniline-based nanocomposites modified with WO3 nanoplates and carbon nanotubes[D]. Zhengzhou: Zhengzhou University, 2020. | |
45 | 杨英花. PANI-MWCNTs纳米复合室温柔性氨气传感器的研究[D]. 大连: 大连理工大学, 2018. |
YANG Yinghua. Study on PANI-MWCNTs nanocomposite room temperature flexible ammonia gas sensor[D]. Dalian: Dalian University of Technology, 2018. | |
46 | 杜海英, 王兢, 张秀峰, 等. MWCNTs掺杂的PANI纳米复合材料的制备及敏感特性的研究[J]. 功能材料, 2013, 44(20): 3024-3029. |
DU Haiying, WANG Jing, ZHANG Xiufeng, et al. Preparation, characterization and gas sensitivity studies of MWCNTs-doped PANI nanocomposites[J]. Journal of Functional Materials, 2013, 44(20): 3024-3029. | |
47 | 阚侃, 刘颖, 石雨, 等. Pt负载PANI/CNTs复合纳米线的制备及室温NH3气敏性能研究[J]. 黑龙江科学, 2016, 7(19): 32-35. |
KAN Kan, LIU Ying, SHI Yu, et al. Preparation of Pt doped PANI/CNTs composite nanowires for NH3 gas sensor at room temperature[J]. Heilongjiang Science, 2016, 7(19): 32-35. | |
48 | LI Yang, WANG Huicai, CAO Xiehong, et al. A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor[J]. Nanotechnology, 2008, 19(1): 015503. |
49 | 曾娴. 碳纳米管阵列复合材料的制备及其在气体传感器中的应用[D]. 苏州: 苏州大学, 2017. |
ZENG Xian. Preparation of carbon nanotube array composite and its application as a gas sensor[D]. Suzhou: Soochow University, 2017. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[7] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[8] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[9] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[12] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[13] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[14] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[15] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |