化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1437-1447.DOI: 10.16085/j.issn.1000-6613.2022-0967
陈仪1(), 郭耀励1,2, 叶海星3, 李宇璇1, 牛青山1()
收稿日期:
2022-05-24
修回日期:
2022-08-10
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
牛青山
作者简介:
陈仪(1998—),女,硕士研究生,研究方向为渗透汽化脱盐。E-mail:2016101054@email.szu.edu.cn。
基金资助:
CHEN Yi1(), GUO Yaoli1,2, YE Haixing3, LI Yuxuan1, NIU Q.Jason1()
Received:
2022-05-24
Revised:
2022-08-10
Online:
2023-03-15
Published:
2023-04-10
Contact:
NIU Q.Jason
摘要:
渗透汽化(PV)具有预处理要求低,截留率及水回收率高、抗污染性强等优势,在水处理尤其是高盐废水处理方面具有巨大的应用前景。但目前PV脱盐技术的分离效率较低、稳定性差、抗污染性能欠佳的劣势限制了PV膜在分离膜技术的应用和认可。新型膜材料如二维纳米材料的引入使得PV膜从材料到性能都有了较大提升,被认为是提高PV膜脱盐性能的有效手段。本文首先介绍了PV脱盐技术的分离机理,并从3个方面综述了二维纳米材料在制备PV脱盐膜中的应用现状:二维纳米材料的分类与合成方法、PV复合脱盐膜的制备途径与稳定性提高策略以及二维纳米材料对PV膜特性及脱盐性能的影响。文中指出现有的PV传质模型存在较大局限性且新型二维纳米材料的合成方法较难,为了进一步提高PV复合膜的性能并降低制备成本,还需完善PV复合膜的传质机制并优化二维纳米材料的制备工艺。
中图分类号:
陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447.
CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447.
PV脱盐膜 | 制备方法 | NaCl浓度 /g·L-1 | 实验条件 | 渗透通量 /L∙m-2∙h-1 | 截留率 /% | 参考 文献 |
---|---|---|---|---|---|---|
GO/聚丙烯腈 | 真空抽滤法 | 3.5 | 90℃,真空0.1kPa | 65.1 | 99.8 | [ |
GO/多巴胺-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 48.4 | 99.7 | [ |
氧化石墨烯骨架(GOF)/对苯二异氰酸酯-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 11.4 | 99.9 | [ |
GO-聚乙烯醇/聚丙烯腈 | 真空抽滤法 | 3.5 | 70℃,真空0.1kPa | 69.1 | 99.9 | [ |
GO-聚乙烯醇/聚偏氟乙烯(PVDF) | 溶液铸膜法 | 10 | 65℃,真空24kPa | 28 | 99.9 | [ |
GO-聚酰亚胺 | 相转化法 | 3.5 | 90℃,真空100kPa | 36.1 | 99.9 | [ |
GO-壳聚糖 | 溶液铸膜法 | 5 | 81℃,真空6kPa | 30 | 99.9 | [ |
GO-聚酰亚胺纤维 | 相转化法 | 3.5 | 90℃,真空100kPa | 15.6 | 99.9 | [ |
纳米石墨烯材料(GNPs)-聚醚嵌段酰胺/聚四氟乙烯 | 相转化法 | 马尔马拉海水 | 35℃,真空0.1kPa | 2.5 | 99.8 | [ |
GOF/多巴胺-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 20.1 | 99.9 | [ |
二胺分子交联 GO/多巴胺(PDA)-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 19.7 | 99.9 | [ |
GO/聚碳酸酯 | 抽滤涂层法 | 10 | 70℃,真空3kPa | 42.4 | 99.9 | [ |
GOF-磺基琥珀酸/尼龙底膜 | 真空抽滤法 | 3.5 | 70℃,真空0.13kPa | 80.1 | 99.9 | [ |
GO/聚丙烯中空纤维膜 | 真空抽滤法 | 3.321 | 70℃,真空 | 11.5 | 99.9 | [ |
GO/海藻酸钠/聚甲基丙烯酸甲酯 | 溶液铸膜法 | 3 | 60℃,真空0.1kPa | 8.11 | 99.41 | [ |
GO-聚醚酰亚胺/聚酰胺 | 层层组装法 | 5 | 65℃,真空1.7kPa | 13 | 99.9 | [ |
GO-聚乙烯醇/混合纤维素膜 | 压力辅助抽滤法 | 10 | 85℃,真空6kPa | 98 | 99.9 | [ |
聚酰胺/GO/聚丙烯腈 | 压力辅助抽滤法 | 3.5 | 70℃,真空0.2kPa | 26.7 | 99.9 | [ |
阳离子交联-GO膜 | 真空抽滤法 | 纯水 | 20~25℃,真空2.8kPa | 16.16 | — | [ |
壳聚糖-氧化石墨烯(CGO)-二甲基苯磺酸/聚丙烯 | 压力辅助抽滤法 | 1.752 | 70℃,真空-95kPa | 30.5 | 99.9 | [ |
GO-Zn2+/聚醚砜 | 真空抽滤法 | 3 | 60℃,真空-100kPa | 47.8 | 99.9 | [ |
MXene/聚丙烯腈 | 真空抽滤法 | 3.5 | 65℃,真空0.4kPa | 85.4 | 99.5 | [ |
MXene-马来酸/尼龙底膜 | 真空抽滤法 | 3.5 | 65℃,真空0.1kPa | 70 | 99 | [ |
MXene-聚乙烯醇/聚四氟乙烯 | 溶液铸膜法 | 3.5 | 30℃,真空0.13kPa | 62.2 | 99.8 | [ |
ZSM-5/α-氧化铝 | 浸涂法 | 24 | 80℃,真空1kPa | 6.4 | 99.5 | [ |
AEL-聚酰胺/α-氧化铝 | 真空抽滤法 | 3.6 | 25℃,真空 | 3.3 | 99.9 | [ |
ZSM-5/聚偏氟乙烯 | 真空抽滤法 | 22(混合盐) | 73℃±2℃,真空 | 11 | 99.9 | [ |
表1 二维材料复合渗透气化脱盐性能比较
PV脱盐膜 | 制备方法 | NaCl浓度 /g·L-1 | 实验条件 | 渗透通量 /L∙m-2∙h-1 | 截留率 /% | 参考 文献 |
---|---|---|---|---|---|---|
GO/聚丙烯腈 | 真空抽滤法 | 3.5 | 90℃,真空0.1kPa | 65.1 | 99.8 | [ |
GO/多巴胺-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 48.4 | 99.7 | [ |
氧化石墨烯骨架(GOF)/对苯二异氰酸酯-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 11.4 | 99.9 | [ |
GO-聚乙烯醇/聚丙烯腈 | 真空抽滤法 | 3.5 | 70℃,真空0.1kPa | 69.1 | 99.9 | [ |
GO-聚乙烯醇/聚偏氟乙烯(PVDF) | 溶液铸膜法 | 10 | 65℃,真空24kPa | 28 | 99.9 | [ |
GO-聚酰亚胺 | 相转化法 | 3.5 | 90℃,真空100kPa | 36.1 | 99.9 | [ |
GO-壳聚糖 | 溶液铸膜法 | 5 | 81℃,真空6kPa | 30 | 99.9 | [ |
GO-聚酰亚胺纤维 | 相转化法 | 3.5 | 90℃,真空100kPa | 15.6 | 99.9 | [ |
纳米石墨烯材料(GNPs)-聚醚嵌段酰胺/聚四氟乙烯 | 相转化法 | 马尔马拉海水 | 35℃,真空0.1kPa | 2.5 | 99.8 | [ |
GOF/多巴胺-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 20.1 | 99.9 | [ |
二胺分子交联 GO/多巴胺(PDA)-α-氧化铝 | 真空抽滤法 | 3.5 | 90℃,真空 | 19.7 | 99.9 | [ |
GO/聚碳酸酯 | 抽滤涂层法 | 10 | 70℃,真空3kPa | 42.4 | 99.9 | [ |
GOF-磺基琥珀酸/尼龙底膜 | 真空抽滤法 | 3.5 | 70℃,真空0.13kPa | 80.1 | 99.9 | [ |
GO/聚丙烯中空纤维膜 | 真空抽滤法 | 3.321 | 70℃,真空 | 11.5 | 99.9 | [ |
GO/海藻酸钠/聚甲基丙烯酸甲酯 | 溶液铸膜法 | 3 | 60℃,真空0.1kPa | 8.11 | 99.41 | [ |
GO-聚醚酰亚胺/聚酰胺 | 层层组装法 | 5 | 65℃,真空1.7kPa | 13 | 99.9 | [ |
GO-聚乙烯醇/混合纤维素膜 | 压力辅助抽滤法 | 10 | 85℃,真空6kPa | 98 | 99.9 | [ |
聚酰胺/GO/聚丙烯腈 | 压力辅助抽滤法 | 3.5 | 70℃,真空0.2kPa | 26.7 | 99.9 | [ |
阳离子交联-GO膜 | 真空抽滤法 | 纯水 | 20~25℃,真空2.8kPa | 16.16 | — | [ |
壳聚糖-氧化石墨烯(CGO)-二甲基苯磺酸/聚丙烯 | 压力辅助抽滤法 | 1.752 | 70℃,真空-95kPa | 30.5 | 99.9 | [ |
GO-Zn2+/聚醚砜 | 真空抽滤法 | 3 | 60℃,真空-100kPa | 47.8 | 99.9 | [ |
MXene/聚丙烯腈 | 真空抽滤法 | 3.5 | 65℃,真空0.4kPa | 85.4 | 99.5 | [ |
MXene-马来酸/尼龙底膜 | 真空抽滤法 | 3.5 | 65℃,真空0.1kPa | 70 | 99 | [ |
MXene-聚乙烯醇/聚四氟乙烯 | 溶液铸膜法 | 3.5 | 30℃,真空0.13kPa | 62.2 | 99.8 | [ |
ZSM-5/α-氧化铝 | 浸涂法 | 24 | 80℃,真空1kPa | 6.4 | 99.5 | [ |
AEL-聚酰胺/α-氧化铝 | 真空抽滤法 | 3.6 | 25℃,真空 | 3.3 | 99.9 | [ |
ZSM-5/聚偏氟乙烯 | 真空抽滤法 | 22(混合盐) | 73℃±2℃,真空 | 11 | 99.9 | [ |
1 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1: 16018. |
2 | CULLMANN J, DILLEY M, EGERTON P, et al. 2021 state of climate services: Water[R/OL]. WMO, 2021. ,climate%20adaptation%2C%20sustainable%20development%20and%20disaster%20risk%20reduction. |
3 | 蒙俊权.聚乙烯醇渗透汽化脱盐复合膜的制备及性能研究[D]. 北京: 北京化工大学, 2021. |
MENG Junquan. Study on preparation and performance of polyvinyl alcohol pervaporation desalination composite membranes[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
4 | LEE A, ELAM J W, DARLING S B. Membrane materials for water purification: design, development, and application[J]. Environmental Science: Water Research & Technology, 2016, 2(1): 17-42. |
5 | 邱柯卫, 苏伟, 孙志猛, 等. 渗透蒸发脱盐技术研究进展[J]. 膜科学与技术, 2020, 40(6): 133-140. |
QIU Kewei, SU Wei, SUN Zhimeng, et al. Review on desalination technology by pervaporation[J]. Membrane Science and Technology, 2020, 40(6): 133-140. | |
6 | CASTRO-MUÑOZ R. Breakthroughs on tailoring pervaporation membranes for water desalination: a review[J]. Water Research, 2020, 187: 116428. |
7 | WANG Q Z, LI N, BOLTO B, et al. Desalination by pervaporation: a review[J]. Desalination, 2016, 387: 46-60. |
8 | KAMINSKI W, MARSZALEK J, TOMCZAK E. Water desalination by pervaporation—comparison of energy consumption[J]. Desalination, 2018, 433: 89-93. |
9 | PRIHATININGTYAS I, VAN DER BRUGGEN B. Nanocompositepervaporation membrane for desalination[J]. Chemical Engineering Research and Design, 2020, 164: 147-161. |
10 | TEOW Y H, MOHAMMAD A W. New generation nanomaterials for water desalination: a review[J]. Desalination, 2019, 451: 2-17. |
11 | 李胄彦, 戴若彬, 李洋, 等. 基于二维纳米材料的水处理功能膜研究进展[J]. 化工进展, 2021, 40(8): 4117-4126. |
LI Zhouyan, DAI Ruobin, LI Yang, et al. Research progress of functional membranes based on two-dimensional nanomaterials for water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4117-4126. | |
12 | LIU Gongping, JIN Wanqin, XU Nanping. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030. |
13 | 万武波, 纪冉, 何锋. 石墨烯基分离膜研究进展[J]. 化学进展, 2017, 29(8): 833-845. |
WAN Wubo, JI Ran, HE Feng. Recent advances in graphene based separation membranes[J]. Progress in Chemistry, 2017, 29(8): 833-845. | |
14 | LIU Yi. Beyond graphene oxides: emerging 2D molecular sieve membranes for efficient separation[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1257-1271. |
15 | CASTRO-MUÑOZ R, CRUZ-CRUZ A, ALFARO-SOMMERS Y, et al. Reviewing the recent developments of using graphene-based nanosized materials in membrane separations[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(19): 3415-3452. |
16 | 芦瑛, 张林, 李明, 等. 氧化石墨烯基水处理膜研究进展[J]. 科技导报, 2015, 33(14): 32-35. |
LU Ying, ZHANG Lin, LI Ming, et al. Research progress of graphene oxide based membrane in water treatment[J]. Science & Technology Review, 2015, 33(14): 32-35. | |
17 | 张晴, 任文才, 成会明. 石墨烯基分离膜研究进展[J]. 中国材料进展, 2019, 38(9): 887-896. |
ZHANG Qing, REN Wencai, CHENG Huiming. Research progress of graphene-based separation membranes[J]. Materials China, 2019, 38(9): 887-896. | |
18 | SUN Pengzhan, WANG Kunlin, ZHU Hongwei. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications[J]. Advanced Materials, 2016, 28(12): 2287-2310. |
19 | NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
20 | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nat Nanotechnol, 2017, 12(6): 546-550. |
21 | LIANG Bin, ZHAN Wu, QI Genggeng, et al. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications[J]. Journal of Materials Chemistry A, 2015, 3(9): 5140-5147. |
22 | HALAKOO E, FENG X S. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation[J]. Separation and Purification Technology, 2020, 234: 116077. |
23 | YANG Guang, XIE Zongli, CRAN Ma, et al. Functionalizing graphene oxide framework membranes with sulfonic acid groups for superior aqueous mixture separation[J]. Journal of Materials Chemistry A, 2019, 7(34): 19682-19690. |
24 | XU Kai, FENG Bo, ZHOU Chen, et al. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination[J]. Chemical Engineering Science, 2016, 146: 159-165. |
25 | QIAN Yunlong, ZHOU Chen, HUANG Aisheng. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J]. Carbon, 2018, 136: 28-37. |
26 | CHENG Cheng, SHEN Lingdi, YU Xufeng, et al. Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly(vinylalcohol) for efficient pervaporation desalination[J]. Journal of Materials Chemistry A, 2017, 5(7): 3558-3568. |
27 | FENG Bo, XU Kai, HUANG Aisheng. Synthesis of graphene oxide/polyimide mixed matrix membranes for desalination[J]. RSC Advances, 2017, 7(4): 2211-2217. |
28 | HUANG Aisheng, FENG Bo. Synthesis of novel graphene oxide-polyimide hollow fiber membranes for seawater desalination[J]. Journal of Membrane Science, 2018, 548: 59-65. |
29 | QIAN Xiaowei, LI Na, WANG Qinzhuo, et al. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation[J]. Desalination, 2018, 438: 83-96. |
30 | ALMARZOOQI K, ASHRAFI M, KANTHAN T, et al. Graphene oxide membranes for high salinity, produced water separation by pervaporation[J]. Membranes, 2021, 11(7): 475. |
31 | CHING K, LIAN B Y, LESLIE G, et al. Metal-cation-modified graphene oxide membranes for water permeation[J]. Carbon, 2020, 170: 646-657. |
32 | ZHAO Xiaoying, TONG Ziqiang, LIU Xiufeng, et al. Facile preparation of polyamide-graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12232-12238. |
33 | CHA-UMPONG W, DONG G X, RAZMJOU A, et al. Effect of oscillating temperature and crystallization on graphene oxide composite pervaporation membrane for inland brine desalination[J]. Journal of Membrane Science, 2019, 588: 117210. |
34 | CHA-UMPONG W, MAYYAS M, RAZMJOU A, et al. Modification of GO-based pervaporation membranes to improve stability in oscillating temperature operation[J]. Desalination, 2021, 516: 115215. |
35 | WYATT B C, ROSENKRANZ A, ANASORI B. 2D MXenes: tunable mechanical and tribologicalproperties[J]. Advanced Materials, 2021, 33(17): e2007973. |
36 | VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): eabf1581. |
37 | 郑伟, 孙正明, 张培根, 等. 二维纳米材料MXene的研究进展[J]. 材料导报, 2017, 31(9): 1-14. |
ZHENG Wei, SUN Zhengming, ZHANG Peigen, et al. Research progress on MXene, two dimensional nano-materials[J]. Materials Review, 2017, 31(9): 1-14. | |
38 | 曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7): 2078-2091. |
ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[M]. Acta Materiae Compositae Sinica, 2021, 38(7): 2078-2091 | |
39 | RASOOL K, PANDEY R P, RASHEED P A, et al. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)[J]. Materials Today, 2019, 30: 80-102. |
40 | WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials, 2021, 33(39): e2103148. |
41 | LIU Guozhen, SHEN Jie, LIU Quan, et al. Ultrathin two-dimensional MXene membrane for pervaporationdesalination[J]. Journal of Membrane Science, 2018, 548: 548-558. |
42 | YANG G, XIE Z L, THORNTON A W, et al. Ultrathin poly(vinyl alcohol)/MXenenanofilm composite membrane with facile intrusion-free construction for pervaporative separations[J]. Journal of Membrane Science, 2020, 614: 118490. |
43 | DING Mingmei, XU Hang, CHEN Wei, et al. 2D laminar maleic acid-crosslinkedMXene membrane with tunable nanochannels for efficient and stable pervaporationdesalination[J]. Journal of Membrane Science, 2020, 600: 117871. |
44 | 何磊, 么秋香, 孙鸣, 等. 二维(2D)沸石与三维(3D)沸石的制备及催化研究进展[J]. 化学学报, 2022, 80(2): 180-198. |
HE Lei, YAO Qiuxiang, SUN Ming, et al. Progress in preparation and catalysis of two-dimensional(2D) and three-dimensional(3D) zeolites[J]. ActaChimicaSinica, 2022, 80(2): 180-198. | |
45 | LI Yi, YU Jihong. Emerging applications of zeolites in catalysis, separation and host-guest assembly[J]. Nature Reviews Materials, 2021, 6(12): 1156-1174. |
46 | PŘECH J, PIZARRO P, SERRANO D P, et al. From 3D to 2D zeolite catalytic materials[J]. Chemical Society Reviews, 2018, 47(22): 8263-8306. |
47 | 黄阳环, 张宏斌, 唐颐. 二维沸石及其在大分子催化转化领域的研究进展[J]. 大学化学, 2017, 32(2): 1-8. |
HUANG Yanghuan, ZHANG Hongbin, TANG Yi. Progress of two-dimensional zeolites and their applications in bulky molecule catalytic conversion[J]. University Chemistry, 2017, 32(2): 1-8. | |
48 | ROTH W J, NACHTIGALL P, MORRIS R E, et al. Two-dimensional zeolites: current status and perspectives[J]. Chemical Reviews, 2014, 114(9): 4807-4837. |
49 | CAO Zishu, ZENG Shixuan, XU Zhi, et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Science Advances, 2018, 4(11): eaau8634. |
50 | CAO Z S, ISKHAKOVA L, SUN X H, et al. ZSM-5 zeolite nanosheet-based membranes on porous polyvinylidene fluoride for high-flux desalination[J]. ACS Applied Nano Materials, 2021, 4(3): 2895-2902. |
51 | KORDE A, MIN B, GANESAN A, et al. AEL zeolite nanosheet-polyamide nanocomposite membranes on α-alumina hollow fibers with enhanced pervaporationproperties[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14789-14796. |
52 | FENG Bo, XU Kai, HUANG Aisheng. Covalent synthesis of three-dimensional graphene oxide framework (GOF) membrane for seawater desalination[J]. Desalination, 2016, 394: 123-130. |
53 | LI Lin, HOU Jingwei, YE Yun, et al. Suppressing salt transport through composite pervaporation membranes for brine desalination[J]. Applied Sciences, 2017, 7(8): 856. |
54 | NIGIZ F U. Preparation of high-performance graphenenanoplate incorporated polyether block amide membrane and application for seawater desalination[J]. Desalination, 2018, 433: 164-171. |
55 | QIAN Yunlong, ZHANG Xiaoling, LIU Chuanyao, et al. Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance[J].Desalination, 2019, 460: 56-63. |
56 | LI L, HOU J W, CHEN V. Pinning down the water transport mechanism in graphene oxide pervaporation desalination membranes[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4231-4239. |
57 | NIGIZ F U. Graphene oxide‑sodium alginate membrane for seawater desalination through pervaporation[J]. Desalination, 2020, 485: 114465. |
58 | SUN Jiawei, QIAN Xiaowei, WANG Ziheng, et al. Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation[J]. Journal of Membrane Science, 2020, 599: 117838. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[6] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[7] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[8] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[9] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[10] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[11] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[12] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[13] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[14] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[15] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |