化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1471-1483.DOI: 10.16085/j.issn.1000-6613.2022-1000

• 材料科学与技术 • 上一篇    下一篇

直接空气捕碳固体多孔材料的研究进展

孔祥如1(), 张肖阳1,2, 孙鹏翔1, 崔琳1, 董勇1()   

  1. 1.山东大学能源与动力工程学院,燃煤污染物减排国家工程实验室,环境热工技术教育部工程研究中心,山东省能源碳减排技术与资源化利用重点实验室,山东 济南 250061
    2.山东大学环境科学与工程学院,山东 青岛 266237
  • 收稿日期:2022-05-30 修回日期:2022-08-20 出版日期:2023-03-15 发布日期:2023-04-10
  • 通讯作者: 董勇
  • 作者简介:孔祥如(1998—),女,硕士研究生,研究方向为空气捕碳技术。E-mail:202014450@mail.sdu.edu.cn
  • 基金资助:
    山东省重大科技创新工程项目(2020CXGC011402)

Research progress of solid porous materials for direct CO2 capture from air

KONG Xiangru1(), ZHANG Xiaoyang1,2, SUN Pengxiang1, CUI Lin1, DONG Yong1()   

  1. 1.National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2.School of Environment Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
  • Received:2022-05-30 Revised:2022-08-20 Online:2023-03-15 Published:2023-04-10
  • Contact: DONG Yong

摘要:

直接空气捕碳(DAC)技术属于一种负碳技术,作为碳捕集、存储和利用(CCUS)技术的有效补充,是助力实现“双碳”目标的重要技术之一。由于吸附能力强、再生能耗低、应用场景灵活以及结构可调性强,固体多孔材料在降低DAC经济成本和运行能耗方面具有不可替代的优势。本文从固体多孔材料的DAC原理出发,重点综述了包括沸石吸附剂、硅基吸附剂、炭基吸附剂、纳米氧化铝吸附剂、金属有机框架(MOF)材料吸附剂和多孔树脂材料吸附剂等DAC的研究现状,系统介绍和比较了固体多孔吸附材料的吸附容量、吸附选择性、水热稳定性、再生能耗以及循环稳定性方面的优缺点。本文着重分析了胺功能化改性和载体孔隙结构等因素对吸附CO2性能的影响规律,对各类固体多孔材料在DAC应用中面临的挑战提出了具体的优化方向,并指出未来固体多孔吸附材料的设计开发应兼顾经济性和高效性,加快开展中试规模的DAC试验研究。

关键词: 直接空气捕集, CO2捕集, 物理吸附, 化学吸附, 固体多孔材料

Abstract:

Direct air capture (DAC) technology is a negative carbon technology, which is an effective supplement to the carbon capture, utilization and storage (CCUS) technology and one of the important technologies to help achieve the carbon peaking and carbon neutrality goals. Solid porous materials have irreplaceable advantages in reducing the economic cost and operating energy consumption of DAC due to their strong adsorption capacity, low regeneration energy consumption, flexible application scenarios and adjustable structure. Starting from the principles of DAC of solid porous materials, this paper focused on reviewing DAC adsorbents, such as zeolite adsorbents, silica-based adsorbents, carbon-based adsorbents, nano-alumina adsorbents, MOF adsorbents and porous resin adsorbents. The advantages and disadvantages on adsorption capacity, adsorption selectivity, hydrothermal stability, regeneration energy consumption and cycle stability of solid porous materials are introduced and compared. The effects of amine functionalization modification and carrier pore structure on the adsorption performance of CO2 are emphatically analyzed, and specific optimization directions for the challenges faced by various solid porous materials in the application of DAC are prospected. It is pointed out that the design and development of solid porous adsorbents in the future should take both economy and efficiency into account, and further pilot-scale DAC experiments should be carried out.

Key words: direct air capture, CO2 capture, physisorption, chemisorption, solid porous materials

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn