化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1471-1483.DOI: 10.16085/j.issn.1000-6613.2022-1000
孔祥如1(), 张肖阳1,2, 孙鹏翔1, 崔琳1, 董勇1()
收稿日期:
2022-05-30
修回日期:
2022-08-20
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
董勇
作者简介:
孔祥如(1998—),女,硕士研究生,研究方向为空气捕碳技术。E-mail:202014450@mail.sdu.edu.cn。
基金资助:
KONG Xiangru1(), ZHANG Xiaoyang1,2, SUN Pengxiang1, CUI Lin1, DONG Yong1()
Received:
2022-05-30
Revised:
2022-08-20
Online:
2023-03-15
Published:
2023-04-10
Contact:
DONG Yong
摘要:
直接空气捕碳(DAC)技术属于一种负碳技术,作为碳捕集、存储和利用(CCUS)技术的有效补充,是助力实现“双碳”目标的重要技术之一。由于吸附能力强、再生能耗低、应用场景灵活以及结构可调性强,固体多孔材料在降低DAC经济成本和运行能耗方面具有不可替代的优势。本文从固体多孔材料的DAC原理出发,重点综述了包括沸石吸附剂、硅基吸附剂、炭基吸附剂、纳米氧化铝吸附剂、金属有机框架(MOF)材料吸附剂和多孔树脂材料吸附剂等DAC的研究现状,系统介绍和比较了固体多孔吸附材料的吸附容量、吸附选择性、水热稳定性、再生能耗以及循环稳定性方面的优缺点。本文着重分析了胺功能化改性和载体孔隙结构等因素对吸附CO2性能的影响规律,对各类固体多孔材料在DAC应用中面临的挑战提出了具体的优化方向,并指出未来固体多孔吸附材料的设计开发应兼顾经济性和高效性,加快开展中试规模的DAC试验研究。
中图分类号:
孔祥如, 张肖阳, 孙鹏翔, 崔琳, 董勇. 直接空气捕碳固体多孔材料的研究进展[J]. 化工进展, 2023, 42(3): 1471-1483.
KONG Xiangru, ZHANG Xiaoyang, SUN Pengxiang, CUI Lin, DONG Yong. Research progress of solid porous materials for direct CO2 capture from air[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1471-1483.
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Li-LSX | — | 0.0395% | 25 | 1.34 | 240 | — | PB | [ |
Zeolite Y8 | TEPA | 0.15% | 30~70 | 3.14 | — | — | PB | [ |
Zeolite Y | TEPA | 0.5% | 25 | 1.12 | 100 | 5/稳定 | TGA | [ |
Zeolite 13X | — | 0.04% | 25 | 0.03(RH=49%) | 140 | — | TPD | [ |
表1 沸石吸附剂DAC性能对比
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Li-LSX | — | 0.0395% | 25 | 1.34 | 240 | — | PB | [ |
Zeolite Y8 | TEPA | 0.15% | 30~70 | 3.14 | — | — | PB | [ |
Zeolite Y | TEPA | 0.5% | 25 | 1.12 | 100 | 5/稳定 | TGA | [ |
Zeolite 13X | — | 0.04% | 25 | 0.03(RH=49%) | 140 | — | TPD | [ |
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
MCM-41 | TRI | 0.04% | 25 | 0.98 | — | — | TGA | [ |
MCM-41 | TRI | 0.04% | 25 | 0.9 1.40(RH=64%) | — | — | PB | [ |
MCM-41 | TRI | 空气 | (+5)~(-5) | 1.16(RH=60%~80%) | 100 | 3/迅速下降 | TGA | [ |
SBA-15 | PEI | 0.04% | 25 | 1.90 | 90 | 10/稳定 | TGA | [ |
SBA-15 | TEPA | 0.04% | 25 | 3.44 | 90 | 10/稳定 | TGA | [ |
SBA-15+PEG200 | PEI | 0.04%/He | 30 | 0.79 | — | — | TGA | [ |
SBA15+PEG1000 | PEI | 0.04%/He | 30 | 0.71 | — | — | TGA | [ |
SBA-15+CTAB | PEI | 0.04%/He | 30 | 0.55 | — | — | TGA | [ |
SBA-15 | APTMS | 0.04%/Ar | 25 | 0.60 | 110 | 3/稳定 | TGA | [ |
SBA-15 | Aziridine | 0.04% | 25 | 1.72 | 110 | 4/稳定 | MS | [ |
SBA-15 | TEPA | 0.04% | 25 | 3.59(RH=49%) | — | — | TPD | [ |
Zr7-SBA-15 | PEI(800) | 0.04%/Ar | 25 | 0.85 | 110 | 4/稳定 | TGA | [ |
SBA-15 | PEI | 0.04%/Ar | 25 | 1.05 | 110 | 3/稳定 | TGA | [ |
表2 MCM-41和SBA-15载体吸附剂DAC性能对比
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
MCM-41 | TRI | 0.04% | 25 | 0.98 | — | — | TGA | [ |
MCM-41 | TRI | 0.04% | 25 | 0.9 1.40(RH=64%) | — | — | PB | [ |
MCM-41 | TRI | 空气 | (+5)~(-5) | 1.16(RH=60%~80%) | 100 | 3/迅速下降 | TGA | [ |
SBA-15 | PEI | 0.04% | 25 | 1.90 | 90 | 10/稳定 | TGA | [ |
SBA-15 | TEPA | 0.04% | 25 | 3.44 | 90 | 10/稳定 | TGA | [ |
SBA-15+PEG200 | PEI | 0.04%/He | 30 | 0.79 | — | — | TGA | [ |
SBA15+PEG1000 | PEI | 0.04%/He | 30 | 0.71 | — | — | TGA | [ |
SBA-15+CTAB | PEI | 0.04%/He | 30 | 0.55 | — | — | TGA | [ |
SBA-15 | APTMS | 0.04%/Ar | 25 | 0.60 | 110 | 3/稳定 | TGA | [ |
SBA-15 | Aziridine | 0.04% | 25 | 1.72 | 110 | 4/稳定 | MS | [ |
SBA-15 | TEPA | 0.04% | 25 | 3.59(RH=49%) | — | — | TPD | [ |
Zr7-SBA-15 | PEI(800) | 0.04%/Ar | 25 | 0.85 | 110 | 4/稳定 | TGA | [ |
SBA-15 | PEI | 0.04%/Ar | 25 | 1.05 | 110 | 3/稳定 | TGA | [ |
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
EtSNTs | PEI | 0.04%/N2 | 30 | 1.05 | 100 | 8/N含量下降7% | PB | [ |
MCF | APS | 0.04%/He | 25 | 0.54 | — | — | TGA | [ |
MAPS | 0.04%/He | 25 | 0.17 | — | — | TGA | [ | |
MCF | PEI(800) | 0.04%/Ar | 25 | 1.74 | 110 | — | TGA | [ |
PEI(2500) | 0.04%/Ar | 25 | 1.05 | 110 | 3/稳定 | TGA | [ | |
PAA | 0.04%/Ar | 25 | 0.86 | 110 | — | TGA | [ | |
纳米二氧化硅 | PEI-LMW | 空气 | 23 | 2.6 | 80 | — | PB | [ |
PEI-HMW | 空气 | 23 | 2.0 | 80 | — | PB | [ | |
PEI-Linear | 空气 | 23 | 3.2 | 80 | — | PB | [ | |
白炭黑 | PEI-ln | 0.04%/N2/O2 | 25 | 2.34 | 140 | — | IR | [ |
PEI(800) | 0.04%/N2/O2 | 25 | 2.44 | 140 | — | IR | [ | |
PEI-M | 0.04%/N2/O2 | 25 | 1.69 | 140 | — | IR | [ | |
PEI-H | 0.04%/N2/O2 | 25 | 1.67 | 140 | — | IR | [ | |
白炭黑 | PEI(25000) 33% | 0.042% | 25 | 1.18 1.77(RH=67%) | 85 | — | IR | [ |
PEI(25000) 50% | 0.042% | 25 | 1.70 1.41(RH=67%) | 85 | — | IR | [ | |
硅胶 | AEATPMS | 0.04%~0.044% | 25 | 0.4 0.44(RH=40%) | 90 | 40/稳定 | PB | [ |
HP2MG | TEPA | 0.04% | 35 | 2.50 | 80 | — | TGA | [ |
CARiACT G10 HPV | PEI | 0.04%/Ar | 25 | 2.36 | 110 | 4/下降30% | TGA | [ |
PEI+AP | 0.04%/Ar | 25 | 2.26 | 110 | 4/下降9% | TGA | [ | |
PEI+TP | 0.04%/Ar | 25 | 2.19 | 110 | 4/下降1% | TGA | [ |
表3 其他种类硅基载体吸附剂的DAC性能对比
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
EtSNTs | PEI | 0.04%/N2 | 30 | 1.05 | 100 | 8/N含量下降7% | PB | [ |
MCF | APS | 0.04%/He | 25 | 0.54 | — | — | TGA | [ |
MAPS | 0.04%/He | 25 | 0.17 | — | — | TGA | [ | |
MCF | PEI(800) | 0.04%/Ar | 25 | 1.74 | 110 | — | TGA | [ |
PEI(2500) | 0.04%/Ar | 25 | 1.05 | 110 | 3/稳定 | TGA | [ | |
PAA | 0.04%/Ar | 25 | 0.86 | 110 | — | TGA | [ | |
纳米二氧化硅 | PEI-LMW | 空气 | 23 | 2.6 | 80 | — | PB | [ |
PEI-HMW | 空气 | 23 | 2.0 | 80 | — | PB | [ | |
PEI-Linear | 空气 | 23 | 3.2 | 80 | — | PB | [ | |
白炭黑 | PEI-ln | 0.04%/N2/O2 | 25 | 2.34 | 140 | — | IR | [ |
PEI(800) | 0.04%/N2/O2 | 25 | 2.44 | 140 | — | IR | [ | |
PEI-M | 0.04%/N2/O2 | 25 | 1.69 | 140 | — | IR | [ | |
PEI-H | 0.04%/N2/O2 | 25 | 1.67 | 140 | — | IR | [ | |
白炭黑 | PEI(25000) 33% | 0.042% | 25 | 1.18 1.77(RH=67%) | 85 | — | IR | [ |
PEI(25000) 50% | 0.042% | 25 | 1.70 1.41(RH=67%) | 85 | — | IR | [ | |
硅胶 | AEATPMS | 0.04%~0.044% | 25 | 0.4 0.44(RH=40%) | 90 | 40/稳定 | PB | [ |
HP2MG | TEPA | 0.04% | 35 | 2.50 | 80 | — | TGA | [ |
CARiACT G10 HPV | PEI | 0.04%/Ar | 25 | 2.36 | 110 | 4/下降30% | TGA | [ |
PEI+AP | 0.04%/Ar | 25 | 2.26 | 110 | 4/下降9% | TGA | [ | |
PEI+TP | 0.04%/Ar | 25 | 2.19 | 110 | 4/下降1% | TGA | [ |
载体/名称 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
PEI-syna50 | PEI | 0.04%/Ar | 25 | 1.74 | 110 | 3/稳定 | TGA | [ |
γ-Al2O3 | PEI | 0.04%/He | 30 | 1.71(RH=50%) | — | — | IR | [ |
γ-Al2O3+5min steam | PEI | 0.04%/He | 30 | 1.96(RH=50%) | — | — | IR | [ |
γ-Al2O3 40% | PEI | 0.04%/He | 30 | 1.23 | — | — | TGA | [ |
Boehmite/alumina 40% | PEI | 0.04%/He | 30 | 1.12 | — | — | TGA | [ |
K2CO3/Al2O3-750 | — | 0.04%~0.044% | 25 | 0.93(RH=25%) | 200 | — | PB | [ |
表4 氧化铝载体吸附剂的DAC性能对比
载体/名称 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
PEI-syna50 | PEI | 0.04%/Ar | 25 | 1.74 | 110 | 3/稳定 | TGA | [ |
γ-Al2O3 | PEI | 0.04%/He | 30 | 1.71(RH=50%) | — | — | IR | [ |
γ-Al2O3+5min steam | PEI | 0.04%/He | 30 | 1.96(RH=50%) | — | — | IR | [ |
γ-Al2O3 40% | PEI | 0.04%/He | 30 | 1.23 | — | — | TGA | [ |
Boehmite/alumina 40% | PEI | 0.04%/He | 30 | 1.12 | — | — | TGA | [ |
K2CO3/Al2O3-750 | — | 0.04%~0.044% | 25 | 0.93(RH=25%) | 200 | — | PB | [ |
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
介孔炭+Span80 | PEI(800) | 0.04%/N2 | 25 | 2.25 2.58(RH=80%) | 110 | 10/下降3% | PB | [ |
多壁碳纳米管(NWCN) | PEI | 0.035%/N2 | 30 | 1.07 | 90 | 10/下降10% | TGA | [ |
表5 炭基载体吸附剂的DAC性能对比
载体 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
介孔炭+Span80 | PEI(800) | 0.04%/N2 | 25 | 2.25 2.58(RH=80%) | 110 | 10/下降3% | PB | [ |
多壁碳纳米管(NWCN) | PEI | 0.035%/N2 | 30 | 1.07 | 90 | 10/下降10% | TGA | [ |
载体/名称 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Mg-MOF-74 | — | 0.04% | 23.4 | 0.14(RH=49%) | — | — | TPD | [ |
Mg2(dobpdc) | EN | 0.039% | 25 | 2.83 | 120 | 20/下降4% | vol. | [ |
Mg2(dobdc) | EN | 0.04% | 22 | 1.51 | 110 | 4/稳定 | TGA | [ |
Mg2(dobpdc) | — | 0.039% | 25 | 0.13 | — | — | vol. | [ |
Mg2(dobpdc) | mmen | 0.039% | 25 | 1.05 | 150 | 6/稳定 | TGA | [ |
Mg2(dobdc) | N2H4 | 0.04% | 25 | 3.89 | 130 | — | TGA | [ |
Cr-MIL-101-SO3H | TAEA | 0.04% | 20 | 1.72 | 80 | 15/稳定 | vol. | [ |
HKUST-1 | — | 0.04% | 23.4 | 0.05(RH=49%) | — | — | TPD | [ |
SIFSIX-3-Ni | — | 0.04% | 23.4 | 0.18(RH=49%) | — | — | TPD | [ |
SIFSIX-3-Cu | — | 0.04% | 25 | 1.24 | — | — | vol. | [ |
表6 MOF载体吸附剂的DAC性能对比
载体/名称 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Mg-MOF-74 | — | 0.04% | 23.4 | 0.14(RH=49%) | — | — | TPD | [ |
Mg2(dobpdc) | EN | 0.039% | 25 | 2.83 | 120 | 20/下降4% | vol. | [ |
Mg2(dobdc) | EN | 0.04% | 22 | 1.51 | 110 | 4/稳定 | TGA | [ |
Mg2(dobpdc) | — | 0.039% | 25 | 0.13 | — | — | vol. | [ |
Mg2(dobpdc) | mmen | 0.039% | 25 | 1.05 | 150 | 6/稳定 | TGA | [ |
Mg2(dobdc) | N2H4 | 0.04% | 25 | 3.89 | 130 | — | TGA | [ |
Cr-MIL-101-SO3H | TAEA | 0.04% | 20 | 1.72 | 80 | 15/稳定 | vol. | [ |
HKUST-1 | — | 0.04% | 23.4 | 0.05(RH=49%) | — | — | TPD | [ |
SIFSIX-3-Ni | — | 0.04% | 23.4 | 0.18(RH=49%) | — | — | TPD | [ |
SIFSIX-3-Cu | — | 0.04% | 25 | 1.24 | — | — | vol. | [ |
载体/名称 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
HP20 | PEI(600) | 0.04% | 25 | 2.26 | 100 | 5/稳定 | PB | [ |
HP2MGL | PEI(600) | 0.04%/N2 | 25 | 1.96 3.16(RH=10%) | 100 | 5/稳定 | PB | [ |
HP2MGL | PEI(600) | 0.04%/79.5%N2/20.5%O2 | 25 | 2.44(RH=10%) | — | — | PB | [ |
HP2MGL-CTAB | PEI(600) | 0.04%/79.5%N2/20.5%O2 | 25 | 2.63(RH=10%) | — | — | PB | [ |
D201 | 季胺 | 0.04% | 20 | 1.02(RH=21.2%) | 变湿 | — | TGA | [ |
D290 | 季胺 | 0.04% | 20 | 1.03(RH=21.2%) | 变湿 | — | TGA | [ |
表7 多孔树脂载体吸附剂的DAC性能对比
载体/名称 | 胺种类 | CO2浓度/气氛 | 吸附温度/℃ | CO2吸附量/mmol·g-1 | 再生温度/℃ | 循环次数/性能 | 测量方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
HP20 | PEI(600) | 0.04% | 25 | 2.26 | 100 | 5/稳定 | PB | [ |
HP2MGL | PEI(600) | 0.04%/N2 | 25 | 1.96 3.16(RH=10%) | 100 | 5/稳定 | PB | [ |
HP2MGL | PEI(600) | 0.04%/79.5%N2/20.5%O2 | 25 | 2.44(RH=10%) | — | — | PB | [ |
HP2MGL-CTAB | PEI(600) | 0.04%/79.5%N2/20.5%O2 | 25 | 2.63(RH=10%) | — | — | PB | [ |
D201 | 季胺 | 0.04% | 20 | 1.02(RH=21.2%) | 变湿 | — | TGA | [ |
D290 | 季胺 | 0.04% | 20 | 1.03(RH=21.2%) | 变湿 | — | TGA | [ |
名称 | 载体 | CO2浓度/气氛 | 吸附温度 /℃ | CO2吸附量/mmol·g-1 | 再生温度 /℃ | 循环次数/性能 | 测量 方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
RFAS4 | 甲醛、苯二酚APTES | 0.04%/N2 | 30 | 1.78(体积分数H2O=0.15%) | 80 | 10/略有下降 | IR | [ |
CB-N-g-PCMS-OH- | 炭黑 | 压缩空气 | 15 | 0.36(RH=95%) | 变湿 | — | IR | [ |
Colloidal crystal | 交联多孔聚合物 | 压缩空气 | 15 | 0.5(RH=95%) | 变湿 | — | IR | [ |
HIPE | 高内相乳化体系 | 压缩空气 | 15 | 0.14(RH=95%) | 变湿 | — | IR | [ |
PPN-6-CH2DETA | PPN-6 | 0.04%/N2/O2 | 22 | 1.04 | 120 | — | vol. | [ |
NPEI-SIPs | 溶剂浸渍聚合物 | 0.04%/N2 | 25 | 1.05 1.66(湿) | 120 | — | PB | [ |
AEAPDMS-NFC-FD | 纳米纤维素 | 0.0506% | 25 | 1.39(RH=40%) | 80 | 20/稳定 | IR | [ |
APDES-NFC | 纳米纤维素 | 0.04% | 23 | 1.11 2.13(RH=97%) | — | — | IR | [ |
PS-CC | 聚苯乙烯 | 0.04% | 20 | 0.57 | 变湿 | — | IR | [ |
HIPES | 交联多孔聚合物 | 压缩空气 | 15 | 0.72 | 变湿 | 15/稳定 | IR | [ |
PEI snow | 聚乙烯亚胺 | 空气 | 20±2 | 1.29 | 120 | 10/稳定 | PB | [ |
PEI-CA-SiO2 | 聚合物/二氧化硅整体纤维 | 0.0395%/He | 35 | 0.59 1.6(RH=85%) | 110 | 6/下降7% | TGA | [ |
表8 其他种类载体吸附剂的DAC性能对比
名称 | 载体 | CO2浓度/气氛 | 吸附温度 /℃ | CO2吸附量/mmol·g-1 | 再生温度 /℃ | 循环次数/性能 | 测量 方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
RFAS4 | 甲醛、苯二酚APTES | 0.04%/N2 | 30 | 1.78(体积分数H2O=0.15%) | 80 | 10/略有下降 | IR | [ |
CB-N-g-PCMS-OH- | 炭黑 | 压缩空气 | 15 | 0.36(RH=95%) | 变湿 | — | IR | [ |
Colloidal crystal | 交联多孔聚合物 | 压缩空气 | 15 | 0.5(RH=95%) | 变湿 | — | IR | [ |
HIPE | 高内相乳化体系 | 压缩空气 | 15 | 0.14(RH=95%) | 变湿 | — | IR | [ |
PPN-6-CH2DETA | PPN-6 | 0.04%/N2/O2 | 22 | 1.04 | 120 | — | vol. | [ |
NPEI-SIPs | 溶剂浸渍聚合物 | 0.04%/N2 | 25 | 1.05 1.66(湿) | 120 | — | PB | [ |
AEAPDMS-NFC-FD | 纳米纤维素 | 0.0506% | 25 | 1.39(RH=40%) | 80 | 20/稳定 | IR | [ |
APDES-NFC | 纳米纤维素 | 0.04% | 23 | 1.11 2.13(RH=97%) | — | — | IR | [ |
PS-CC | 聚苯乙烯 | 0.04% | 20 | 0.57 | 变湿 | — | IR | [ |
HIPES | 交联多孔聚合物 | 压缩空气 | 15 | 0.72 | 变湿 | 15/稳定 | IR | [ |
PEI snow | 聚乙烯亚胺 | 空气 | 20±2 | 1.29 | 120 | 10/稳定 | PB | [ |
PEI-CA-SiO2 | 聚合物/二氧化硅整体纤维 | 0.0395%/He | 35 | 0.59 1.6(RH=85%) | 110 | 6/下降7% | TGA | [ |
1 | LUEKING Angela D, COLE Milton W. Energy and mass balances related to climate change and remediation[J]. Science of the Total Environment, 2017, 590/591: 416-429. |
2 | KOVEN Charles D, RINGEVAL Bruno, FRIEDLINGSTEIN Pierre, et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(36): 14769-14774. |
3 | LACKNER Klaus S, BRENNAN Sarah, MATTER Jürg M, et al. The urgency of the development of CO2 capture from ambient air[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13156-13162. |
4 | REGUFE Maria João, PEREIRA Ana, FERREIRA Alexandre F P, et al. Current developments of carbon capture storage and/or utilization–looking for net-zero emissions defined in the Paris agreement[J]. Energies, 2021, 14(9): 2406. |
5 | International Energy Agency. Direct air capture 2022: a key technology for net zero[R]. Paris: IEA, 2022. |
6 | KEITH David W, HOLMES Geoffrey, ANGELO David ST, et al. A process for capturing CO2 from the atmosphere[J]. Joule, 2018, 2(8): 1573-1594. |
7 | GUTKNECHT Valentin, SNÆBJÖRNSDÓTTIR Sandra Ósk, Bergur SIGFÚSSON, et al. Creating a carbon dioxide removal solution by combining rapid mineralization of CO2 with direct air capture[J]. Energy Procedia, 2018, 146: 129-134. |
8 | Thermostat Global. Core solution-Direct air capture[EB/OL]. [2022-08-18]. . |
9 | 宋珂琛, 崔希利, 邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162. |
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162. | |
10 | SHI Xiaoyang, XIAO Hang, AZARABADI Habib, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angewandte Chemie, 2020, 59(18): 6984-7006. |
11 | LACKNER Klaus S. Capture of carbon dioxide from ambient air[J]. The European Physical Journal Special Topics, 2009, 176(1): 93-106. |
12 | LACKNER Klaus S. The thermodynamics of direct air capture of carbon dioxide[J]. Energy, 2013, 50: 38-46. |
13 | MARCO-LOZAR Juan Pablo, KUNOWSKY Mirko, Fabián SUÁREZ-GARCÍA, et al. Sorbent design for CO2 capture under different flue gas conditions[J]. Carbon, 2014, 72: 125-134. |
14 | DUTCHER Bryce, FAN Maohong, RUSSELL Armistead G. Amine-based CO2 capture technology development from the beginning of 2013—A review[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2137-2148. |
15 | BONENFANT Danielle, KHAROUNE Mourad, NIQUETTE Patrick, et al. Advances in principal factors influencing carbon dioxide adsorption on zeolites[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013007. |
16 | GARGIULO Nicola, PEPE Francesco, CAPUTO Domenico. CO2 adsorption by functionalized nanoporous materials: a review[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(2): 1811-1822. |
17 | KUMAR Santosh, SRIVASTAVA Rohit, Joonseok KOH. Utilization of zeolites as CO2 capturing agents: advances and future perspectives[J]. Journal of CO2 Utilization, 2020, 41: 101251. |
18 | STUCKERT Nicholas R, YANG Ralph T. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15[J]. Environmental Science & Technology, 2011, 45(23): 10257-10264. |
19 | LEE Shih Ching, HSIEH Chu Chin, CHEN Chien Hung, et al. CO2 adsorption by Y-type zeolite impregnated with amines in indoor air[J]. Aerosol and Air Quality Research, 2013, 13(1): 360-366. |
20 | THAKKAR Harshul V, ISSA A, ROWNAGHI A, et al. CO2 capture from air using amine functionalized Kaolin-based zeolites[J]. Chemical Engineering & Technology, 2017, 40(11): 1999-2007. |
21 | SU Fengsheng, LU Chungsying. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption[J]. Energy & Environmental Science, 2012, 5(10): 9021-9027. |
22 | Solutions Greencap. ESC Project[EB/OL]. [2022-08-18]. . |
23 | CHEN Chao, KIM Jun, Wha-Seung AHN. CO2 capture by amine-functionalized nanoporous materials: a review[J]. Korean Journal of Chemical Engineering, 2014, 31(11): 1919-1934. |
24 | XU Xiaochun, SONG Chunshan, ANDRESEN John M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy & Fuels, 2002, 16(6): 1463-1469. |
25 | LIU Lina, CHEN Jian, TAO Lin, et al. Aminopolymer confined in ethane-silica nanotubes for CO2 capture from ambient air[J]. ChemNanoMat, 2020, 6(7): 1096-1103. |
26 | DIDAS Stephanie A, KULKARNI Ambarish R, SHOLL David S, et al. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air[J]. ChemSusChem, 2012, 5(10): 2058-2064. |
27 | GOEPPERT Alain, METH Sergio, G K Surya PRAKASH, et al. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents[J]. Energy & Environmental Science, 2010, 3(12): 1949-1960. |
28 | GOEPPERT Alain, ZHANG Hang, CZAUN Miklos, et al. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air[J]. ChemSusChem, 2014, 7(5): 1386-1397. |
29 | MIAO Yihe, HE Zhijun, ZHU Xuancan, et al. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica[J]. Chemical Engineering Journal, 2021, 426: 131875. |
30 | WANG Xiaoxing, MA Xiaoliang, SONG Chunshan, et al. Molecular basket sorbents polyethylenimine-SBA-15 for CO2 capture from flue gas: characterization and sorption properties[J]. Microporous and Mesoporous Materials, 2013, 169: 103-111. |
31 | SAKWA-NOVAK Miles A, TAN Shuai, JONES Christopher W. Role of additives in composite PEI/oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24748-24759. |
32 | BELMABKHOUT Youssef, Rodrigo SERNA-GUERRERO, SAYARI Abdelhamid. Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 359-365. |
33 | WAGNER Annemarie, STEEN Bengt, Göran JOHANSSON, et al. Carbon dioxide capture from ambient air using amine-grafted mesoporous adsorbents[J]. International Journal of Spectroscopy, 2013, 2013: 690186. |
34 | CHAIKITTISILP Watcharop, KHUNSUPAT Ratayakorn, CHEN Thomas T, et al. Poly(allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203-14210. |
35 | CHAIKITTISILP Watcharop, LUNN Jonathan D, SHANTZ Daniel F, et al. Poly(L-lysine) brush-mesoporous silica hybrid material as a biomolecule-based adsorbent for CO2 capture from simulated flue gas and air[J]. Chemistry, 2011, 17(38): 10556-10561. |
36 | CHOI Sunho, DRESE Jeffrey H, EISENBERGER Peter M, et al. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air[J]. Environmental Science & Technology, 2011, 45(6): 2420-2427. |
37 | ZHAO An, SAMANTA Arunkumar, SARKAR Partha, et al. Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6480-6491. |
38 | KUWAHARA Yasutaka, KANG Dun-Yen, COPELAND John R, et al. Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports[J]. Journal of the American Chemical Society, 2012, 134(26): 10757-10760. |
39 | CHAIKITTISILP Watcharop, KIM Hyung-Ju, JONES Christopher W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air[J]. Energy & Fuels, 2011, 25(11): 5528-5537. |
40 | GOEPPERT Alain, CZAUN Miklos, Robert B MAY, et al. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent[J]. Journal of the American Chemical Society, 2011, 133(50): 20164-20167. |
41 | WURZBACHER Jan Andre, GEBALD Christoph, STEINFELD Aldo. Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel[J]. Energy & Environmental Science, 2011, 4(9): 3584-3592. |
42 | BRILMAN D W F, VENEMAN R. Capturing atmospheric CO2 using supported amine sorbents[J]. Energy Procedia, 2013, 37: 6070-6078. |
43 | CHOI Sunho, GRAY McMahan L, JONES Christopher W. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air[J]. ChemSusChem, 2011, 4(5): 628-635. |
44 | OKUMURA Takeshi, YOSHIZAWA Katsuhiro, NUMAGUCHI Ryohei, et al. Demonstration plant of the Kawasaki CO2 capture (KCC) system with solid sorbent for coal-fired power station[J]. SSRN Electronic Journal, 2018. . |
45 | SAKWA-NOVAK Miles A, JONES Christopher W. Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9245-9255. |
46 | VESELOVSKAYA Janna V, LYSIKOV Anton I, NETSKINA Olga V, et al. K2CO3-containing composite sorbents based on thermally modified alumina: synthesis, properties, and potential application in a direct air capture/methanation process[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7130-7139. |
47 | KAMRAN Urooj, PARK Soo Jin. Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review[J]. Journal of Cleaner Production, 2021, 290: 125776. |
48 | WANG Mei, WANG Jitong, QIAO Wenming, et al. Scalable preparation of nitrogen-enriched carbon microspheres for efficient CO2 capture[J]. RSC Advances, 2014, 4(106): 61456-61464. |
49 | 陈爱兵, 于奕峰, 臧文伟, 等. 掺氮多孔碳在二氧化碳吸附分离中的应用[J]. 无机材料学报, 2015, 30(1): 9-16. |
CHEN Aibing, YU Yifeng, ZANG Wenwei, et al. Nitrogen-doped porous carbon for CO2 adsorption[J]. Journal of Inorganic Materials, 2015, 30(1): 9-16. | |
50 | WANG Jitong, HUANG Haihong, WANG Mei, et al. Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5319-5327. |
51 | KELLER Laura, Burkhard OHS, LENHART Jelena, et al. High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture[J]. Carbon, 2018, 126: 338-345. |
52 | MADDEN David G, SCOTT Hayley S, KUMAR Amrit, et al. Flue-gas and direct-air capture of CO2 by porous metal-organic materials[J]. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2017, 375(2084): 20160025. |
53 | CASKEY Stephen R, WONG-FOY Antek G, MATZGER Adam J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. Journal of the American Chemical Society, 2008, 130(33): 10870-10871. |
54 | LEE Woo Ram, HWANG Sang Yeon, Dae Won RYU, et al. Diamine-functionalized metal-organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism[J]. Energy & Environmental Science, 2014, 7(2): 744-751. |
55 | CHOI Sunho, WATANABE Taku, Tae-Hyun BAE, et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. The Journal of Physical Chemistry Letters, 2012, 3(9): 1136-1141. |
56 | MCDONALD Thomas M, LEE Woo Ram, MASON Jarad A, et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)[J]. Journal of the American Chemical Society, 2012, 134(16): 7056-7065. |
57 | LIAO Peiqin, CHEN Xunwei, LIU Siyang, et al. Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures[J]. Chemical Science, 2016, 7(10): 6528-6533. |
58 | LI Hao, WANG Kecheng, FENG Dawei, et al. Incorporation of alkylamine into metal-organic frameworks through a Brønsted acid-base reaction for CO2 capture[J]. ChemSusChem, 2016, 9(19): 2832-2840. |
59 | KUMAR Amrit, MADDEN David G, LUSI Matteo, et al. Direct air capture of CO2 by physisorbent materials[J]. Angewandte Chemie International Edition, 2015, 54(48): 14372-14377. |
60 | SHEKHAH Osama, BELMABKHOUT Youssef, ADIL Karim, et al. A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal-organic framework[J]. Chemical Communications, 2015, 51(71): 13595-13598. |
61 | SHEKHAH Osama, BELMABKHOUT Youssef, CHEN Zhijie, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture[J]. Nature Communications, 2014, 5: 4228. |
62 | SADIQ Muhammad Munir, BATTEN Michael P, MULET Xavier, et al. A pilot-scale demonstration of mobile direct air capture using metal-organic frameworks[J]. Advanced Sustainable Systems, 2020, 4(12): 2000101. |
63 | DING Meili, FLAIG Robinson W, JIANG Hailong, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
64 | CHEN Zhenhe, DENG Shubo, WEI Haoran, et al. Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6937-6945. |
65 | WANG Jitong, WANG Mei, LI Wencheng, et al. Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2 [J]. AIChE Journal, 2015, 61(3): 972-980. |
66 | WANG Tao, LIU Jun, LACKNER Klaus S, et al. Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent[J]. Greenhouse Gases: Science and Technology, 2016, 6(1): 138-149. |
67 | WANG Tao, LIU Jun, HUANG Hao, et al. Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere[J]. Chemical Engineering Journal, 2016, 284: 679-686. |
68 | 吴禹松. 用于空气二氧化碳捕集的多孔树脂吸附剂成型及性能研究[D]. 杭州: 浙江大学, 2020. |
WU Yusong. Research on formation and performance of porous resin adsorbent for direct air capture of CO2 [D]. Hangzhou: Zhejiang University, 2020. | |
69 | WANG Tao, LACKNER Klaus S, WRIGHT Allen. Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science & Technology, 2011, 45(15): 6670-6675. |
70 | HE Leilei, FAN Maohong, DUTCHER Bryce, et al. Dynamic separation of ultradilute CO2 with a nanoporous amine-based sorbent[J]. Chemical Engineering Journal, 2012, 189/190: 13-23. |
71 | HE Hongkun, ZHONG Mingjiang, KONKOLEWICZ Dominik, et al. Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture[J]. Journal of Materials Chemistry A, 2013, 1(23): 6810-6821. |
72 | HE Hongkun, LI Wenwen, ZHONG Mingjiang, et al. Reversible CO2 capture with porous polymers using the humidity swing[J]. Energy & Environmental Science, 2013, 6(2): 488-493. |
73 | LU Weigang, SCULLEY Julian P, YUAN Daqiang, et al. Carbon dioxide capture from air using amine-grafted porous polymer networks[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4057-4061. |
74 | Guanhe RIM, FERIC Tony G, MOORE Thomas, et al. Solvent impregnated polymers loaded with liquid-like nanoparticle organic hybrid materials for enhanced kinetics of direct air capture and point source CO2 capture[J]. Advanced Functional Materials, 2021, 31(21): 2010047. |
75 | GEBALD Christoph, WURZBACHER Jan Andre, TINGAUT Philippe, et al. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air[J]. Environmental Science & Technology, 2011, 45(20): 9101-9108. |
76 | GEBALD Christoph, WURZBACHER Jan A, BORGSCHULTE Andreas, et al. Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose[J]. Environmental Science & Technology, 2014, 48(4): 2497-2504. |
77 | HE Hongkun, ZHONG Mingjiang, KONKOLEWICZ Dominik, et al. Colloidal crystals: three-dimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible CO2 capture [J]. Advanced Functional Materials, 2013, 23(37): 4719. |
78 | HE Hongkun, LI Wenwen, LAMSON Melissa, et al. Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture[J]. Polymer, 2014, 55(1): 385-394. |
79 | XU Xingguang, MYERS Matthew B, VERSTEEG Friso G, et al. Direct air capture (DAC) of CO2 using polyethylenimine (PEI) “snow”: a scalable strategy[J]. Chemical Communications, 2020, 56(52): 7151-7154. |
80 | SUJAN Achintya R, PANG Simon H, ZHU Guanghui, et al. Direct CO2 capture from air using poly(ethylenimine)-loaded polymer/silica fiber sorbents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5264-5273. |
[1] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[2] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[3] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[4] | 陆诗建, 张媛媛, 吴文华, 杨菲, 刘玲, 康国俊, 李清方, 陈宏福, 王宁, 王风, 张娟娟. 百万吨级CO2捕集项目亚硝胺污染物扩散健康风险评估[J]. 化工进展, 2023, 42(6): 3209-3216. |
[5] | 桑伟, 唐建峰, 花亦怀, 陈洁, 孙培源, 许义飞. 物理溶剂及有机胺的性质对相变吸收性能的影响[J]. 化工进展, 2023, 42(4): 2151-2159. |
[6] | 陆诗建, 刘苗苗, 刘玲, 康国俊, 毛松柏, 王风, 张娟娟, 贡玉萍. 烟气胺法CO2捕集技术进展与未来发展趋势[J]. 化工进展, 2023, 42(1): 435-444. |
[7] | 孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
[8] | 刘畅, 李玉宝, 左奕, 李吉东. 羟基磷灰石负载黄芩苷的不同载药方法比较分析[J]. 化工进展, 2022, 41(9): 4995-5002. |
[9] | 方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962. |
[10] | 陆诗建, 刘玲, 刘滋武, 郭伯文, 俞徐林, 梁艳, 赵东亚, 朱全民. AEP-DPA-CuO相变纳米流体吸收CO2稳定性[J]. 化工进展, 2022, 41(8): 4555-4561. |
[11] | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
[12] | 吴佳佳, 潘振, 商丽艳, 孙秀丽, 孙超, 孙祥广. 中空纤维膜接触器中N,N-二甲基乙醇胺吸收CO2的特性[J]. 化工进展, 2022, 41(4): 2132-2139. |
[13] | 黄晟, 王静宇, 李振宇. 碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022, 41(4): 1689-1703. |
[14] | 宋珂琛, 崔希利, 邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162. |
[15] | 张陆, 杨声. 低温甲醇洗碳捕集改进与优化[J]. 化工进展, 2022, 41(11): 6167-6175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |