化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1152-1162.DOI: 10.16085/j.issn.1000-6613.2021-2216
收稿日期:
2021-10-29
修回日期:
2021-12-12
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
邢华斌
作者简介:
宋珂琛(1991—),男,博士,研究方向为分离工程与高纯化学品制造。E-mail:基金资助:
SONG Kechen1,2(), CUI Xili1,2, XING Huabin1,2()
Received:
2021-10-29
Revised:
2021-12-12
Online:
2022-03-23
Published:
2022-03-28
Contact:
XING Huabin
摘要:
直接空气捕集(DAC)等新兴负碳排放技术是实现“双碳”目标的托底技术保障,近年来受到广泛关注。本文简要分析了直接空气碳捕集技术的特性,归纳总结了胺功能化无机材料和聚合物、金属氢氧化物和碳酸盐、多孔材料等痕量二氧化碳捕集性能,初步分析了负载方式、载体结构等与吸附容量和动力学的关系。浅析了该领域发展面临的问题和机遇,从能耗和性能方面对捕集材料和技术的研发提出以下建议:相较于物理吸附材料,胺功能化材料和固体碱等化学吸附材料具有更好的应用前景;在工艺开发领域,可以借鉴其他低浓度气体深度脱除工艺的经验;另一方面,可以结合不同工艺优势,设计多种工艺耦合的流程;最后,在严峻的环境问题下,必须加快材料研发的步伐,未来的研究重点应集中在材料的设计和低能耗再生方式的开发上。
中图分类号:
宋珂琛, 崔希利, 邢华斌. 二氧化碳直接空气捕集材料与技术研究进展[J]. 化工进展, 2022, 41(3): 1152-1162.
SONG Kechen, CUI Xili, XING Huabin. Progress on direct air capture of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1152-1162.
1 | 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)[R]. 2021. |
China annual report on carbon dioxide capture, utilization and storage (CCUS) (2021)[R]. 2021. | |
2 | SIEGELMAN R L, KIM E J, LONG J R. Porous materials for carbon dioxide separations[J]. Nature Materials, 2021, 20(8): 1060-1072. |
3 | WANG X X, SONG C S. Carbon capture from flue gas and the atmosphere: a perspective[J]. Frontiers in Energy Research, 2020, 8: 560849. |
4 | GAO W L, LIANG S Y, WANG R J, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
5 | DIDAS S A, CHOI S, CHAIKITTISILP W, et al. Amine-oxide hybrid materials for CO2 capture from ambient air[J]. Accounts of Chemical Research, 2015, 48(10): 2680-2687. |
6 | SANZ-PÉREZ E S, MURDOCK C R, DIDAS S A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876. |
7 | HOUSE K Z, BACLIG A C, RANJAN M, et al. Economic and energetic analysis of capturing CO2 from ambient air[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20428-20433. |
8 | LACKNER K, ZIOCK H J, GRIMES P. Carbon dioxide extraction from air: is it an option? [C]//24th Annual Technical Conference on Coal Utilization and Fuel Systems, Clearwater, 1999. |
9 | SHI X Y, XIAO H, AZARABADI H, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angewandte Chemie International Edition, 2020, 59(18): 6984-7006. |
10 | BOLLINI P, DIDAS S A, JONES C W. Amine-oxide hybrid materials for acid gas separations[J]. Journal of Materials Chemistry, 2011, 21(39): 15100. |
11 | ALKHABBAZ M A, BOLLINI P, FOO G S, et al. Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines[J]. Journal of the American Chemical Society, 2014, 136(38): 13170-13173. |
12 | METH S, GOEPPERT A, PRAKASH G K S, et al. Silica nanoparticles as supports for regenerable CO2 sorbents[J]. Energy & Fuels, 2012, 26(5): 3082-3090. |
13 | CHAIKITTISILP W, KHUNSUPAT R, CHEN T T, et al. Poly(allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203-14210. |
14 | CHOI S, GRAY M L, JONES C W. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air[J]. ChemSusChem, 2011, 4(5): 628-635. |
15 | HARPER R J, STIFEL G R, ANDERSON R B. Adsorption of gases on 4A synthetic zeolite[J]. Canadian Journal of Chemistry, 1969, 47(24): 4661-4670. |
16 | HUANG H Y, YANG R T, CHINN D, et al. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2427-2433. |
17 | SAKWA-NOVAK M A, HOLEWINSKI A, HOYT C B, et al. Probing the role of Zr addition versus textural properties in enhancement of CO2 adsorption performance in silica/PEI composite sorbents[J]. Langmuir, 2015, 31(34): 9356-9365. |
18 | KUWAHARA Y, KANG D Y, COPELAND J R, et al. Enhanced CO2 adsorption over polymeric amines supported on heteroatom-incorporated SBA-15 silica: impact of heteroatom type and loading on sorbent structure and adsorption performance[J]. Chemistry: A European Journal, 2012, 18(52): 16649-16664. |
19 | KUWAHARA Y, KANG D Y, COPELAND J R, et al. Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports[J]. Journal of the American Chemical Society, 2012, 134(26): 10757-10760. |
20 | MIAO H J, ZHONG W S, YUAN H L, et al. One-pot synthesis of nitrogen-doped carbons with hierarchically micro- and mesoporous structures for supercapacitors and CO2 capture[J]. New Journal of Chemistry, 2021, 45(15): 6618-6629. |
21 | PAPAIOANNOU D, KATSOULOS P D, PANOUSIS N, et al. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: a review[J]. Microporous and Mesoporous Materials, 2005, 84(1): 161-170. |
22 | LI S H, MULLOOR J J, WANG L Y, et al. Strong and selective adsorption of lysozyme on graphene oxide[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5704-5712. |
23 | BRUNELLI N A, DIDAS S A, VENKATASUBBAIAH K, et al. Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture[J]. Journal of the American Chemical Society, 2012, 134(34): 13950-13953. |
24 | LU W G, SCULLEY J P, YUAN D Q, et al. Carbon dioxide capture from air using amine-grafted porous polymer networks[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4057-4061. |
25 | LU W G, SCULLEY J P, YUAN D Q, et al. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angewandte Chemie International Edition, 2012, 51(30): 7480-7484. |
26 | LIN S J, THEATO P. CO2-responsive polymers[J]. Macromolecular Rapid Communications, 2013, 34(14): 1118-1133. |
27 | CHAIKITTISILP W, KIM H J, JONES C W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air[J]. Energy & Fuels, 2011, 25(11): 5528-5537. |
28 | SAKWA-NOVAK M A, JONES C W. Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9245-9255. |
29 | CHAIKITTISILP W, DAVIS M E, OKUBO T. TPA+-mediated conversion of silicon wafer into preferentially-oriented MFI zeolite film under steaming[J]. Chemistry of Materials, 2007, 19(17): 4120-4122. |
30 | SANZ-PÉREZ E S, OLIVARES-MARÍN M, ARENCIBIA A, et al. CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions[J]. International Journal of Greenhouse Gas Control, 2013, 17: 366-375. |
31 | CHEN C, YANG S T, AHN W S, et al. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity[J]. Chemical Communications, 2009(24): 3627-3629. |
32 | GOEPPERT A, CZAUN M, MAY R B, et al. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent[J]. Journal of the American Chemical Society, 2011, 133(50): 20164-20167. |
33 | BELMABKHOUT Y, SAYARI A. Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas[J]. Energy & Fuels, 2010, 24(9): 5273-5280. |
34 | HARLICK P J E, SAYARI A. Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance[J]. Industrial & Engineering Chemistry Research, 2007, 46(2): 446-458. |
35 | MAJOR C J, SOLLAMI B J, KAMMERMEYER K. Carbon dioxide removal from air by adsorbents[J]. Industrial & Engineering Chemistry Process Design and Development, 1965, 4(3): 327-333. |
36 | HUANG Z, CHEN Z B, REN N Q, et al. A novel application of the SAWD-Sabatier-SPE integrated system for CO2 removal and O2 regeneration in submarine cabins during prolonged voyages[J]. Journal of Zhejiang University: Science A, 2009, 10(11): 1642-1650. |
37 | SATYAPAL S, FILBURN T, TRELA J, et al. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications[J]. Energy & Fuels, 2001, 15(2): 250-255. |
38 | WANG T, LACKNER K S, WRIGHT A. Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science & Technology, 2011, 45(15): 6670-6675. |
39 | CHEN Z H, DENG S B, WEI H R, et al. Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6937-6945. |
40 | GEBALD C, WURZBACHER J A, TINGAUT P, et al. Amine-based nanofibrillated cellulose as adsorbent for CO₂ capture from air[J]. Environmental Science & Technology, 2011, 45(20): 9101-9108. |
41 | HE H K, LI W W, ZHONG M J, et al. Reversible CO2 capture with porous polymers using the humidity swing[J]. Energy & Environmental Science, 2013, 6(2): 488-493. |
42 | BRILMAN D W F, VENEMAN R. Capturing atmospheric CO2 using supported amine sorbents[J]. Energy Procedia, 2013, 37: 6070-6078. |
43 | DIDAS S A, KULKARNI A R, SHOLL D S, et al. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air[J]. ChemSusChem, 2012, 5(10): 2058-2064. |
44 | GOEPPERT A, ZHANG H, CZAUN M, et al. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air[J]. ChemSusChem, 2014, 7(5): 1386-1397. |
45 | HE H K, ZHONG M J, KONKOLEWICZ D, et al. Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture[J]. Journal of Materials Chemistry A, 2013, 1(23): 6810. |
46 | HE H K, ZHONG M J, KONKOLEWICZ D, et al. Three-dimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible CO2 capture[J]. Advanced Functional Materials, 2013, 23(37): 4720-4728. |
47 | WANG X X, MA X L, SCHWARTZ V, et al. A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions[J]. Physical Chemistry Chemical Physics, 2012, 14(4): 1485-1492. |
48 | SAKWA-NOVAK M A, TAN S, JONES C W. Role of additives in composite PEI/oxide CO₂ adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO₂ capture from simulated ambient air[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24748-24759. |
49 | CHOI S, DRESE J H, EISENBERGER P M, et al. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air[J]. Environmental Science & Technology, 2011, 45(6): 2420-2427. |
50 | CHAIKITTISILP W, LUNN J D, SHANTZ D F, et al. Poly(L-lysine) brush-mesoporous silica hybrid material as a biomolecule-based adsorbent for CO2 capture from simulated flue gas and air[J]. Chemistry: A European Journal, 2011, 17(38): 10556-10561. |
51 | BELMABKHOUT Y, SERNA-GUERRERO R, SAYARI A. Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 359-365. |
52 | WAGNER A, STEEN B, JOHANSSON G, et al. Carbon dioxide capture from ambient air using amine-grafted mesoporous adsorbents[J]. International Journal of Spectroscopy, 2013, 2013: 1-8. |
53 | ZEMAN F. Energy and material balance of CO2 capture from ambient air[J]. Environmental Science & Technology, 2007, 41(21): 7558-7563. |
54 | SABATINO F, GRIMM A, GALLUCCI F, et al. A comparative energy and costs assessment and optimization for direct air capture technologies[J]. Joule, 2021, 5(8): 2047-2076. |
55 | BACIOCCHI R, STORTI G, MAZZOTTI M. Process design and energy requirements for the capture of carbon dioxide from air[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(12): 1047-1058. |
56 | YUN S, JANG M G, KIM J K. Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry[J]. Energy, 2021, 229: 120778. |
57 | FEDUNIK-HOFMAN L, BAYON A, DONNE S W. Comparative kinetic analysis of CaCO3/CaO reaction system for energy storage and carbon capture[J]. Applied Sciences, 2019, 9(21): 4601. |
58 | NIKULSHINA V, HIRSCH D, MAZZOTTI M, et al. CO2 capture from air and co-production of H2 via the Ca(OH)2-CaCO3 cycle using concentrated solar power—Thermodynamic analysis[J]. Energy, 2006, 31(12): 1715-1725. |
59 | PRZEPIÓRSKI J, CZYŻEWSKI A, PIETRZAK R, et al. MgO/CaO-loaded porous carbons for carbon dioxide capture[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 357-364. |
60 | VESELOVSKAYA J V, DEREVSCHIKOV V S, KARDASH T Y, et al. Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent[J]. International Journal of Greenhouse Gas Control, 2013, 17: 332-340. |
61 | ZHAO C W, GUO Y F, LI C H, et al. Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents[J]. Applied Energy, 2014, 124: 241-247. |
62 | KEITH D W, HOLMES G, ANGELO D ST, et al. A process for capturing CO2 from the atmosphere[J]. Joule, 2018, 2(8): 1573-1594. |
63 | HOLMES G, KEITH D W. An air-liquid contactor for large-scale capture of CO2 from air[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 2012, 370(1974): 4380-4403. |
64 | WIRAWAN S K, WARMADA I W, WAHYUNI E T. Effect of ion exchanged to the CO2 adsorption on MFI zeolites[J]. ASEAN Journal of Chemical Engineering, 2014, 13(2): 73. |
65 | MURGE P, DINDA S, ROY S. Zeolite-based sorbent for CO2 capture: preparation and performance evaluation[J]. Langmuir, 2019, 35(46): 14751-14760. |
66 | DABBAWALA A A, ISMAIL I, VAITHILINGAM B V, et al. Synthesis of hierarchical porous zeolite-Y for enhanced CO2 capture[J]. Microporous and Mesoporous Materials, 2020, 303: 110261. |
67 | HUANG Q L, LIU H M, AN W, et al. Synergy of a metallic NiCo dimer anchored on a C2N-graphene matrix promotes the electrochemical CO2 reduction reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19113-19121. |
68 | KIM C, CHO H S, CHANG S, et al. An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation[J]. Energy & Environmental Science, 2016, 9(5): 1803-1811. |
69 | WILSON S M W, TEZEL F H. Direct dry air capture of CO2 using VTSA with faujasite zeolites[J]. Industrial & Engineering Chemistry Research, 2020, 59(18): 8783-8794. |
70 | BERTSCH L, HABGOOD H W. An infrared spectroscopic study of the adsorption of water and carbon dioxide by linde molecular sieve X[J]. The Journal of Physical Chemistry, 1963, 67(8): 1621-1628. |
71 | GUO X, CORBIN D R, NAVROTSKY A. Thermodynamics of H2O and CO2 absorption and guest-induced phase transitions in zeolite RHO[J]. The Journal of Physical Chemistry C, 2018, 122(35): 20366-20376. |
72 | BARRER R M, IBBITSON D A. Occlusion of hydrocarbons by chabazite and analcite[J]. Transactions of the Faraday Society, 1944, 40: 195. |
73 | RIDHA F N, WEBLEY P A. Anomalous Henry’s law behavior of nitrogen and carbon dioxide adsorption on alkali-exchanged chabazite zeolites[J]. Separation and Purification Technology, 2009, 67(3): 336-343. |
74 | DEBOST M, KLAR P B, BARRIER N, et al. Synthesis of discrete CHA zeolite nanocrystals without organic templates for selective CO2 capture[J]. Angewandte Chemie International Edition, 2020, 59(52): 23491-23495. |
75 | NGUYEN T H, KIM S, YOON M, et al. Hierarchical zeolites with amine-functionalized mesoporous domains for carbon dioxide capture[J]. ChemSusChem, 2016, 9(5): 455-461. |
76 | DE BAERDEMAEKER T, DE VOS D. Gas separation: trapdoors in zeolites[J]. Nature Chemistry, 2013, 5(2): 89-90. |
77 | CHOI H J, MIN J G, AHN S H, et al. Framework flexibility-driven CO2 adsorption on a zeolite[J]. Materials Horizons, 2020, 7(6): 1528-1532. |
78 | WANG X, YAN N, XIE M, et al. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation[J]. Chemical Science, 2021, 12(25): 8803-8810. |
79 | GRANT GLOVER T, PETERSON G W, SCHINDLER B J, et al. MOF-74 building unit has a direct impact on toxic gas adsorption[J]. Chemical Engineering Science, 2011, 66(2): 163-170. |
80 | SHEKHAH O, BELMABKHOUT Y, ADIL K, et al. A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal-organic framework[J]. Chemical Communications, 2015, 51(71): 13595-13598. |
81 | ZHANG Z Q, DING Q, CUI J Y, et al. High and selective capture of low-concentration CO2 with an anion-functionalized ultramicroporous metal-organic framework[J]. Science China Materials, 2021, 64(3): 691-697. |
82 | HWANG Y, HONG D Y, CHANG J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation[J]. Angewandte Chemie International Edition, 2008, 47(22): 4144-4148. |
83 | CHOI S, WATANABE T, BAE T H, et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. The Journal of Physical Chemistry Letters, 2012, 3(9): 1136-1141. |
84 | MCDONALD T M, MASON J A, KONG X Q, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks[J]. Nature, 2015, 519(7543): 303-308. |
85 | CHAN H X M, YAP E H, HO J H. Axial compression for direct capture of carbon dioxide (CO2)[J]. Applied Mechanics and Materials, 2013, 284/285/286/287: 35-40. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[10] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[11] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[12] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[13] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[14] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[15] | 马源, 肖晴月, 岳君容, 崔彦斌, 刘姣, 许光文. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |