1 |
ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742.
|
2 |
CHEN Y, MU T C. Conversion of CO2 to value-added products mediated by ionic liquids[J]. Green Chemistry, 2019, 21(10): 2544-2574.
|
3 |
WANG M Y, JIN X, WANG X F, et al. Copper-catalyzed and proton-directed selective hydroxymethylation of alkynes with CO2 [J]. Angewandte Chemie International Edition, 2021, 60(8): 3984-3988.
|
4 |
SUN D L, YAMADA Y, SATO S, et al. Glycerol as a potential renewable raw material for acrylic acid production[J]. Green Chemistry, 2017, 19(14): 3186-3213.
|
5 |
张志鑫, 王业红, 张超锋, 等. 丙烯酸催化合成新进展[J]. 化工进展, 2021, 40(4): 2016-2033.
|
|
ZHANG Zhixin, WANG Yehong, ZHANG Chaofeng, et al. New advances in catalytic synthesis of acrylic acid[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2016-2033.
|
6 |
荆涛. 丙烯酸甲酯的绿色合成工艺[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
|
JING Tao. Green process for preparation of methyl acrylate[D]. Harbin: Harbin Institute of Technology, 2012.
|
7 |
HOLLERING M, DUTTA B, KÜHN F E. Transition metal mediated coupling of carbon dioxide and ethene to acrylic acid/acrylates[J]. Coordination Chemistry Reviews, 2016, 309: 51-67.
|
8 |
GUO C X, YU B, MA R, et al. Metal-promoted carboxylation of alkynes/allenes with carbon dioxide[J]. Current Green Chemistry, 2015, 2(1): 14-25.
|
9 |
HOBERG H, SCHAEFER D, BURKHART G. Oxanickelacyclopenten-derivate, ein neuer typ vielseitig verwendbarer synthone[J]. Journal of Organometallic Chemistry, 1982, 228(1): C21-C24.
|
10 |
HOBERG H, PERES Y, MILCHEREIT A. C-C-Verknüpfund von alkenen mit CO2 an nickel(O); herstellung von zimtsäure aus styrol[J]. Journal of Organometallic Chemistry, 1986, 307(2): C38-C40.
|
11 |
HOBERG H, PERES Y, KRÜGER C, et al. A 1-oxa-2-nickela-5-cyclopentanone from ethene and carbon dioxide: preparation, structure, and reactivity[J]. Angewandte Chemie International Edition, 1987, 26(8): 771-773.
|
12 |
FISCHER R, LANGER J, MALASSA A, et al. A key step in the formation of acrylic acid from CO2 and ethylene: the transformation of a nickelalactone into a nickel-acrylate complex[J]. Chemical Communications, 2006(23): 2510-2512.
|
13 |
GRAHAM D C, MITCHELL C, BRUCE M I, et al. Production of acrylic acid through nickel-mediated coupling of ethylene and carbon dioxide—A DFT study[J]. Organometallics, 2007, 26(27): 6784-6792.
|
14 |
BRUCKMEIER C, LEHENMEIER M W, REICHARDT R, et al. Formation of methyl acrylate from CO2 and ethylene via methylation of nickelalactones[J]. Organometallics, 2010, 29(10): 2199-2202.
|
15 |
LEE S Y T, COKOJA M, DREES M, et al. Transformation of nickelalactones to methyl acrylate: on the way to a catalytic conversion of carbon dioxide[J]. ChemSusChem, 2011, 4(9): 1275-1279.
|
16 |
LEJKOWSKI M L, LINDNER R, KAGEYAMA T, et al. The first catalytic synthesis of an acrylate from CO2 and an alkene—A rational approach[J]. Chemistry: A European Journal, 2012, 18(44): 14017-14025.
|
17 |
JIN D, SCHMEIER T J, WILLIARD P G, et al. Lewis acid induced β-elimination from a nickelalactone: efforts toward acrylate production from CO2 and ethylene[J]. Organometallics, 2013, 32(7): 2152-2159.
|
18 |
HENDRIKSEN C, PIDKO E A, YANG G, et al. Catalytic formation of acrylate from carbon dioxide and ethene[J]. Chemistry: A European Journal, 2014, 20(38): 12037-12040.
|
19 |
HUGUET N, JEVTOVIKJ I, GORDILLO A, et al. Nickel-catalyzed direct carboxylation of olefins with CO2: one-pot synthesis of α,β-unsaturated carboxylic acid salts[J]. Chemistry: A European Journal, 2014, 20(51): 16858-16862.
|
20 |
JEVTOVIKJ I, MANZINI S, HANAUER M, et al. Investigations on the catalytic carboxylation of olefins with CO2 towards α,β-unsaturated carboxylic acid salts: characterization of intermediates and ligands as well as substrate effects[J]. Dalton Transactions, 2015, 44(24): 11083-11094.
|
21 |
STIEBER S C, HUGUET N, KAGEYAMA T, et al. Acrylate formation from CO2 and ethylene: catalysis with palladium and mechanistic insight[J]. Chemical Communications, 2015, 51(54): 10907-10909.
|
22 |
MANZINI S, HUGUET N, TRAPP O, et al. Palladium- and Nickel-catalyzed synthesis of sodium acrylate from ethylene, CO2, and phenolate bases: optimization of the catalytic system for a potential process[J]. European Journal of Organic Chemistry, 2015, 2015(32): 7122-7130.
|
23 |
MANZINI S, CADU A, SCHMIDT A C, et al. Enhanced activity and recyclability of palladium complexes in the catalytic synthesis of sodium acrylate from carbon dioxide and ethylene[J]. ChemCatChem, 2017, 9(12): 2269-2274.
|
24 |
ALVAREZ R, CARMONA E, COLE-HAMILTON D J, et al. Formation of acrylic acid derivatives from the reaction of carbon dioxide with ethylene complexes of molybdenum and tungsten[J]. Journal of the American Chemical Society, 1985, 107(19): 5529-5531.
|
25 |
ALVAREZ R, CARMONA E, GALINDO A, et al. Formation of carboxylate complexes from the reactions of carbon dioxide with ethylene complexes of molybdenum and tungsten. X-ray and neutron diffraction studies[J]. Organometallics, 1989, 8(10): 2430-2439.
|
26 |
GALINDO A, PASTOR A, PEREZ P J, et al. Bis(ethylene) complexes of molybdenum and tungsten and their reactivity toward carbon dioxide. New examples of acrylate formation by coupling of ethylene and carbon dioxide[J]. Organometallics, 1993, 12(11): 4443-4451.
|
27 |
SCHUBERT G, PÁPAI I. Acrylate formation via metal-assisted C-C coupling between CO2 and C2H4: reaction mechanism as revealed from density functional calculations[J]. Journal of the American Chemical Society, 2003, 125(48): 14847-14858.
|
28 |
BERNSKOETTER W H, TYLER B T. Kinetics and mechanism of molybdenum-mediated acrylate formation from carbon dioxide and ethylene[J]. Organometallics, 2011, 30(3): 520-527.
|
29 |
ZHANG Y Y, HANNA B S, DINEEN A, et al. Functionalization of carbon dioxide with ethylene at molybdenum hydride complexes[J]. Organometallics, 2013, 32(14): 3969-3979.
|
30 |
WOLFE J M, BERNSKOETTER W H. Reductive functionalization of carbon dioxide to methyl acrylate at zerovalent tungsten[J]. Dalton Transactions, 2012, 41(35): 10763.
|
31 |
HOBERG H, JENNI K, KRÜGER C, et al. CC-coupling of CO2 and butadiene on iron(0) complexes—A novel route to α,ω-dicarboxylic acids[J]. Angewandte Chemie International Edition, 1986, 25(9): 810-811.
|
32 |
HOBERG H, JENNI K, ANGERMUND K, et al. CC-linkages of ethene with CO2 on an iron(0) complex—Synthesis and crystal structure analysis of [(PEt3)2Fe(C2H4)2][J]. Angewandte Chemie International Edition, 1987, 26(2): 153-155.
|
33 |
LI B, KYRAN S J, YEUNG A D, et al. Acrylic acid derivatives of group 8 metal carbonyls: a structural and kinetic study[J]. Inorganic Chemistry, 2013, 52(9): 5438-5447.
|
34 |
AYE K T, COLPITTS D, FERGUSON G, et al. Activation of α,β-lactone by oxidative addition and the structure of a platina(Ⅳ)lactone[J]. Organometallics, 1988, 7(6): 1454-1456.
|
35 |
SANO K, YAMAMOTO T, YAMAMOTO A. Preparation of Ni- or Pt-containing cyclic esters by oxidative addition of cyclic carboxylic anhydrides and their properties[J]. Bulletin of the Chemical Society of Japan, 1984, 57(10): 2741-2747.
|
36 |
ARESTA M, Synthesis QUARANTA E., characterization and reactivity of [Rh(bpy)(C2H4)Cl]. A study on the reaction with C1 molecules (CH2O, CO2) and NaBPh4 [J]. Journal of Organometallic Chemistry, 1993, 463(1/2): 215-221.
|
37 |
BURKHART G, HOBERG H. Oxanickelacyclopentene derivatives from nickel(0), carbon dioxide, and alkynes[J]. Angewandte Chemie International Edition, 1982, 21(1): 76.
|
38 |
DÉRIEN S, DUNACH E, PERICHON J. From stoichiometry to catalysis: electroreductive coupling of alkynes and carbon dioxide with nickel-bipyridine complexes. Magnesium ions as the key for catalysis[J]. Journal of the American Chemical Society, 1991, 113(22): 8447-8454.
|
39 |
SAITO S, NAKAGAWA S, KOIZUMI T, et al. Nickel-mediated regio- and chemoselective carboxylation of alkynes in the presence of carbon dioxide[J]. The Journal of Organic Chemistry, 1999, 64(11): 3975-3978.
|
40 |
GRAHAM D C, BRUCE M I, METHA G F, et al. Regioselective control of the nickel-mediated coupling of acetylene and carbon dioxide—A DFT study[J]. Journal of Organometallic Chemistry, 2008, 693(16): 2703-2710.
|
41 |
TAKIMOTO M, SHIMIZU K, MORI M. Nickel-promoted alkylative or arylative carboxylation of alkynes[J]. Organic Letters, 2001, 3(21): 3345-3347.
|
42 |
SHIMIZU K, TAKIMOTO M, SATO Y, et al. Nickel-catalyzed regioselective synthesis of tetrasubstituted alkene using alkylative carboxylation of disubstituted alkyne[J]. Organic Letters, 2005, 7(2): 195-197.
|
43 |
AOKI M, KANEKO M, IZUMI S, et al. Bidentate amidine ligands for nickel(0)-mediated coupling of carbon dioxide with unsaturated hydrocarbons[J]. Chemical Communications, 2004 (22): 2568.
|
44 |
LI S H, YUAN W M, MA S M. Highly regio- and stereoselective three-component nickel-catalyzed syn-hydrocarboxylation of alkynes with diethyl zinc and carbon dioxide[J]. Angewandte Chemie International Edition, 2011, 50(11): 2578-2582.
|
45 |
WANG X Q, NAKAJIMA M, MARTIN R. Ni-catalyzed regioselective hydrocarboxylation of alkynes with CO2 by using simple alcohols as proton sources[J]. Journal of the American Chemical Society, 2015, 137(28): 8924-8927.
|
46 |
FUJIHARA T, XU T H, SEMBA K, et al. Copper-catalyzed hydrocarboxylation of alkynes using carbon dioxide and hydrosilanes[J]. Angewandte Chemie International Edition, 2011, 50(2): 523-527.
|
47 |
TAKIMOTO M, HOU Z M. Cu-catalyzed formal methylative and hydrogenative carboxylation of alkynes with carbon dioxide: efficient synthesis of α,β-unsaturated carboxylic acids[J]. Chemistry: A European Journal, 2013, 19(34): 11439-11445.
|
48 |
TAKIMOTO M, GHOLAP S S, HOU Z M. Cu-catalyzed alkylative carboxylation of ynamides with dialkylzinc reagents and carbon dioxide[J]. Chemistry: A European Journal, 2015, 21(43): 15218-15223.
|
49 |
SIX Y. Titanium-mediated carboxylation of alkynes with carbon dioxide[J]. European Journal of Organic Chemistry, 2003, 2003(7): 1157-1171.
|
50 |
SHAO P, WANG S, DU G X, et al. Cp2TiCl2-catalyzed hydrocarboxylation of alkynes with CO2: formation of α,β-unsaturated carboxylic acids[J]. RSC Advances, 2017, 7(6): 3534-3539.
|
51 |
SANTHOSHKUMAR R, HONG Y C, LUO C Z, et al. Synthesis of vinyl carboxylic acids using carbon dioxide as a carbon source by iron-catalyzed hydromagnesiation[J]. ChemCatChem, 2016, 8(13): 2210-2213.
|
52 |
NOGI K, FUJIHARA T, JUN T R, et al. Carboxyzincation employing carbon dioxide and zinc powder: cobalt-catalyzed multicomponent coupling reactions with alkynes[J]. Journal of the American Chemical Society, 2016, 138(17): 5547-5550.
|
53 |
TAKIMOTO M, KAWAMURA M, MORI M. Nickel(0)-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes[J]. Organic Letters, 2003, 5(15): 2599-2601.
|
54 |
TAKIMOTO M, KAWAMURA M, MORI M. Nickel-mediated regio- and stereoselective carboxylation of trimethylsilylallene under an atmosphere of carbon dioxide[J]. Synthesis, 2004, 2004(5): 791-795.
|
55 |
TANI Y, FUJIHARA T, JUN T R, et al. Copper-catalyzed regiodivergent silacarboxylation of allenes with carbon dioxide and a silylborane[J]. Journal of the American Chemical Society, 2014, 136(51): 17706-17709.
|