化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1552-1564.DOI: 10.16085/j.issn.1000-6613.2023-0343
• 资源与环境化工 • 上一篇
收稿日期:
2023-03-06
修回日期:
2023-05-08
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
苏毅
作者简介:
董晓涵(1998—),女,硕士研究生,研究方向为资源综合利用。E-mail:2497948443@qq.com。
基金资助:
DONG Xiaohan(), TIAN Yue, SU Yi()
Received:
2023-03-06
Revised:
2023-05-08
Online:
2024-03-10
Published:
2024-04-11
Contact:
SU Yi
摘要:
Cr(Ⅵ)是一种有害污染物,既污染水环境,也会对人体造成伤害。本文以工业固废含钛高炉渣为原料,通过酸浸得到浸出渣基体,经壳聚糖改性,制备一种新型GLZ-jcz/CS复合吸附剂,用来去除废水中的Cr(Ⅵ)。研究了吸附温度、废水pH、吸附剂量、Cr(Ⅵ)初始浓度、吸附时间对Cr(Ⅵ)吸附性能的影响。以Cr(Ⅵ)吸附率为评价指标,确定最优实验条件,并研究了GLZ-jcz/CS复合吸附剂的再生性能。采用扫描电子显微镜、傅里叶红外变换光谱仪、X射线光电子能谱仪 、BET比表面积测试仪对GLZ-jcz/CS复合吸附剂进行表征,结合吸附动力学模型和吸附等温线模型分析,确定吸附机理。实验结果表明:当吸附温度为70℃、废水pH=4、吸附剂用量为0.13g、Cr(Ⅵ)初始浓度为50mg/L、吸附时间为2h时,吸附率达到99.8%,吸附容量可以达到67mg/g,GLZ-jcz/CS复合吸附剂经过6次洗脱,吸附率仍可达到96%以上,吸附模型符合拟二级动力学模型和Langmuir吸附等温模型。
中图分类号:
董晓涵, 田月, 苏毅. 含钛高炉渣制备复合吸附剂及其铬吸附性能[J]. 化工进展, 2024, 43(3): 1552-1564.
DONG Xiaohan, TIAN Yue, SU Yi. Study on the preparation of composite adsorbent with titanium-containing blast furnace slag and chromium adsorption performance[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1552-1564.
初始条件 | 参数 | 参数值 |
---|---|---|
pH=5.5,C0,Cr(Ⅵ)=50mg/L,madsorbent=0.1g,t=4h | T/℃ | 25,35,45,60,70,80 |
T=70℃,C0,Cr(Ⅵ)=50mg/L,madsorbent=0.1g,t=4h | pH | 1,3,4,5,6,7,8,10 |
T=70℃,pH=4,C0,Cr(Ⅵ)=50mg/L,t=4h | madsorbent/g | 0.03,0.05,0.08,0.1,0.13,0.16 |
T=70℃,pH=4,madsorbent=0.13g,t=4h | C0,Cr(Ⅵ)/mg·L-1 | 50,70,90,100,110 |
T=70℃,pH=4,madsorbent=0.13g,C0,Cr(Ⅵ)=50mg/L | t/h | 0.5,1,1.5,2,2.5,4 |
表1 分批实验
初始条件 | 参数 | 参数值 |
---|---|---|
pH=5.5,C0,Cr(Ⅵ)=50mg/L,madsorbent=0.1g,t=4h | T/℃ | 25,35,45,60,70,80 |
T=70℃,C0,Cr(Ⅵ)=50mg/L,madsorbent=0.1g,t=4h | pH | 1,3,4,5,6,7,8,10 |
T=70℃,pH=4,C0,Cr(Ⅵ)=50mg/L,t=4h | madsorbent/g | 0.03,0.05,0.08,0.1,0.13,0.16 |
T=70℃,pH=4,madsorbent=0.13g,t=4h | C0,Cr(Ⅵ)/mg·L-1 | 50,70,90,100,110 |
T=70℃,pH=4,madsorbent=0.13g,C0,Cr(Ⅵ)=50mg/L | t/h | 0.5,1,1.5,2,2.5,4 |
样品 | TiO2 | SiO2 | CaO | MgO | Fe2O3 | Al2O3 | MnO | SO3 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|---|---|
含钛高炉渣 | 10.40 | 25.29 | 29.14 | 9.62 | 11.79 | 11.21 | 0.33 | 0.63 | 1.35 | 0.30 |
浸出渣 | 19.64 | 49.75 | 0.66 | 0.18 | 8.42 | 9.03 | 0.05 | 0.38 | 0.04 | 0.03 |
表2 含钛高炉渣及浸出渣成分分析(质量分数,%)
样品 | TiO2 | SiO2 | CaO | MgO | Fe2O3 | Al2O3 | MnO | SO3 | Na2O | K2O |
---|---|---|---|---|---|---|---|---|---|---|
含钛高炉渣 | 10.40 | 25.29 | 29.14 | 9.62 | 11.79 | 11.21 | 0.33 | 0.63 | 1.35 | 0.30 |
浸出渣 | 19.64 | 49.75 | 0.66 | 0.18 | 8.42 | 9.03 | 0.05 | 0.38 | 0.04 | 0.03 |
Cr(Ⅵ)初始浓度/mg·L-1 | 拟合方程 | qe | k1 | R2 |
---|---|---|---|---|
40 | y=-0.0317x+0.8070 | 6.41 | 0.0317 | 0.9610 |
70 | y=-0.0072x+1.2355 | 17.2 | 0.0072 | 0.9668 |
90 | y=-0.0028x+1.4615 | 28.9 | 0.0028 | 0.9857 |
表3 拟一级动力学相关参数
Cr(Ⅵ)初始浓度/mg·L-1 | 拟合方程 | qe | k1 | R2 |
---|---|---|---|---|
40 | y=-0.0317x+0.8070 | 6.41 | 0.0317 | 0.9610 |
70 | y=-0.0072x+1.2355 | 17.2 | 0.0072 | 0.9668 |
90 | y=-0.0028x+1.4615 | 28.9 | 0.0028 | 0.9857 |
Cr(Ⅵ)初始浓度/mg·L-1 | 拟合方程 | qe | k1 | R2 |
---|---|---|---|---|
40 | y=0.0326x+0.0130 | 30.7 | 0.0818 | 0.9999 |
70 | y=0.0185x+0.0882 | 54.0 | 0.0818 | 0.9999 |
90 | y=0.0143x+0.2575 | 70.1 | 0.0818 | 0.9999 |
表4 拟二级动力学相关参数
Cr(Ⅵ)初始浓度/mg·L-1 | 拟合方程 | qe | k1 | R2 |
---|---|---|---|---|
40 | y=0.0326x+0.0130 | 30.7 | 0.0818 | 0.9999 |
70 | y=0.0185x+0.0882 | 54.0 | 0.0818 | 0.9999 |
90 | y=0.0143x+0.2575 | 70.1 | 0.0818 | 0.9999 |
T/℃ | 拟合方程 | 1/n | KF | R2 |
---|---|---|---|---|
25 | y=0.1640x+3.8260 | 0.1640 | 45.8782 | 0.5922 |
50 | y=0.1317x+4.2808 | 0.1317 | 72.2997 | 0.7642 |
70 | y=0.1271x+4.3326 | 0.1271 | 76.1428 | 0.7849 |
表5 Freundlich拟合相关参数
T/℃ | 拟合方程 | 1/n | KF | R2 |
---|---|---|---|---|
25 | y=0.1640x+3.8260 | 0.1640 | 45.8782 | 0.5922 |
50 | y=0.1317x+4.2808 | 0.1317 | 72.2997 | 0.7642 |
70 | y=0.1271x+4.3326 | 0.1271 | 76.1428 | 0.7849 |
T/℃ | 拟合方程 | Qm | b | R2 |
---|---|---|---|---|
25 | y=0.0067x+0.3615 | 149.5 | 0.0185 | 0.8543 |
50 | y=0.0034x-0.1759 | 292.4 | 0.0194 | 0.9029 |
70 | y=0.0054x+0.1424 | 183.8 | 0.0838 | 0.9323 |
表6 Langmuir拟合相关参数
T/℃ | 拟合方程 | Qm | b | R2 |
---|---|---|---|---|
25 | y=0.0067x+0.3615 | 149.5 | 0.0185 | 0.8543 |
50 | y=0.0034x-0.1759 | 292.4 | 0.0194 | 0.9029 |
70 | y=0.0054x+0.1424 | 183.8 | 0.0838 | 0.9323 |
T/℃ | 拟合方程 | β | Kt | R2 |
---|---|---|---|---|
25 | y=0.8360x-3.8260 | 0.8306 | 45.8782 | 0.9742 |
50 | y=0.8683x-4.2808 | 0.8683 | 72.2997 | 0.9930 |
70 | y=0.8729x-4.3326 | 0.8729 | 76.1428 | 0.9942 |
表7 Redlich-Peterson拟合相关参数
T/℃ | 拟合方程 | β | Kt | R2 |
---|---|---|---|---|
25 | y=0.8360x-3.8260 | 0.8306 | 45.8782 | 0.9742 |
50 | y=0.8683x-4.2808 | 0.8683 | 72.2997 | 0.9930 |
70 | y=0.8729x-4.3326 | 0.8729 | 76.1428 | 0.9942 |
样品 | BET比表面积 /m2·g-1 | 平均孔径/Å | Vt/cm3·g-1 |
---|---|---|---|
浸出渣 | 395.1 | 31.36 | 0.2596 |
吸附剂 | 98.59 | 33.90 | 0.0774 |
表8 浸出渣和吸附剂的结构参数
样品 | BET比表面积 /m2·g-1 | 平均孔径/Å | Vt/cm3·g-1 |
---|---|---|---|
浸出渣 | 395.1 | 31.36 | 0.2596 |
吸附剂 | 98.59 | 33.90 | 0.0774 |
1 | MEI Peng, LI Meng, ZHANG Qian, et al. Prediction model of drinking water source quality with potential industrial-agricultural pollution based on CNN-GRU-Attention[J]. Journal of Hydrology, 2022, 610: 127934. |
2 | ZUANE J D. Handbook of drinking water quality: Standards and controls[J]. Choice Reviews Online, 1991, 28(9): 28-5057. |
3 | DROSTE R L. Theory and practice of water and wastewater treatment[J]. Choice Reviews Online, 1997, 34(8): 34-4491. |
4 | VINOD Kumar, RIPU Daman Parihar, ANKET Sharma, et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses[J]. Chemosphere, 2019, 236: 124364. |
5 | AYDıN Yaşar Andelib, AKSOY Nuran Deveci. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics[J]. Chemical Engineering Journal, 2009, 151(1/2/3): 188-194. |
6 | MONDAL Supriyo Kumar, SAHA Prabirkumar. Separation of hexavalent chromium from industrial effluent through liquid membrane using environmentally benign solvent: A study of experimental optimization through response surface methodology[J]. Chemical Engineering Research and Design, 2018, 132: 564-583. |
7 | CHEN Zhongshan, WEI Benben, YANG Shanye, et al. Synthesis of PANI/AlOOH composite for Cr(Ⅵ) adsorption and reduction from aqueous solutions[J]. ChemistrySelect, 2019, 4(8): 2352-2362. |
8 | OLIVEIRA Helena. Chromium as an environmental pollutant: Insights on induced plant toxicity[J]. Journal of Botany, 2012, 2012: 375843. |
9 | KARTHIK Rathinam, MEENAKSHI Sankaran. Removal of hexavalent chromium ions using polyaniline/silica gel composite[J]. Journal of Water Process Engineering, 2014, 1: 37-45. |
10 | RAI M K, GIRI B S, NATH Y, et al. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: Kinetics, equilibrium and thermodynamics study[J]. Journal of Water Supply: Research and Technology-Aqua, 2018, 67(8): 724-737. |
11 | JOBBY Renitta, Pamela JHA, YADAV Anoop Kumar, et al. Biosorption and biotransformation of hexavalent chromium[Cr(Ⅵ)]: A comprehensive review[J]. Chemosphere, 2018, 207: 255-266. |
12 | MOHAMED Laabd, ABDELAZIZ Imgharn, ABDELGHANI Hsini, et al. Efficient detoxification of Cr(Ⅵ)-containing effluents by sequential adsorption and reduction using a novel cysteine-doped PANi@faujasite composite: Experimental study supported by advanced statistical physics prediction[J]. Journal of Hazardous Materials, 2022, 422: 126857. |
13 | BEUKES J P, DU PREEZ S P, VAN ZYL P G, et al. Review of Cr(Ⅵ) environmental practices in the chromite mining and smelting industry—Relevance to development of the Ring of Fire, Canada[J]. Journal of Cleaner Production, 2017, 165: 874-889. |
14 | EDITION F. Guidelines for drinking-water quality[M]. World Health Organization, 2011. |
15 | GOLDER Animes K, CHANDA Ajoy K, SAMANTA Amar N, et al. Removal of Cr(Ⅵ) from aqueous solution: Electrocoagulation vs chemical coagulation[J]. Separation Science and Technology, 2007, 42(10): 2177-2193. |
16 | LI Yujiang, GAO Baoyu, WU Tao, et al. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide[J]. Water Research, 2009, 43(12): 3067-3075. |
17 | BABU B V, GUPTA S. Adsorption of Cr(Ⅵ) using activated neem leaves: Kinetic studies[J]. Adsorption, 2008, 14(1): 85-92. |
18 | ZHANG Ailin, LI Xin, XING Jia, et al. Adsorption of potentially toxic elements in water by modified biochar: A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 104196. |
19 | QIU Jinli, LIU Fuqiang, CHENG Song, et al. Recyclable nanocomposite of flowerlike MoS2@Hybrid acid-doped PANI immobilized on porous PAN nanofibers for the efficient removal of Cr( Ⅵ )[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 447-456. |
20 | DENG Fang, LU Xiaoying, LUO Yingbo, et al. Novel visible-light-driven direct Z-scheme CdS/CuInS2 nanoplates for excellent photocatalytic degradation performance and highly-efficient Cr( Ⅵ ) reduction[J]. Chemical Engineering Journal, 2019, 361: 1451-1461. |
21 | LI Meirun, SONG Chi, WU Ying, et al. Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/Graphene composites for organic dye degradation and Cr( Ⅵ ) reduction[J]. Applied Surface Science, 2019, 478: 744-753. |
22 | JIAO Handong, TIAN Donghua, WANG Shuai, et al. Direct preparation of titanium alloys from Ti-bearing blast furnace slag[J]. Journal of the Electrochemical Society, 2017, 164(7): D511-D516. |
23 | 王海波, 孙青竹, 张雪峰, 等. 磷酸三钠对高钛高炉渣制备微晶泡沫玻璃的影响[J]. 钢铁钒钛, 2021, 42(4): 57-61. |
WANG Haibo, SUN Qingzhu, ZHANG Xuefeng, et al. Effect of Na3PO4·12H2O on foam glass-ceramics prepared from high titanium blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 57-61. | |
24 | 张宇鑫, 丁长坤, 岳程飞, 等. 壳聚糖微球的制备及其对甲基橙和Cr(Ⅵ)的吸附性能研究[J]. 天津化工, 2021, 35(4): 29-32. |
ZHANG Yuxin, DING Changkun, YUE Chengfei, et al. Preparation of chitosan microspheres and study of adsorption performancefor methyl orange and Cr(Ⅵ)[J]. Tianjin Chemical Industry, 2021, 35(4): 29-32. | |
25 | JIANG Chunlu, WANG Rui, CHEN Xing, et al. Preparation of chitosan modified fly ash under acid condition and its adsorption mechanism for Cr(Ⅵ)in water[J]. Journal of Central South University, 2021, 28(6): 1652-1664. |
26 | 钟少锋, 吉婉丽, 刘晓云. 壳聚糖超细纤维的制备及其铬离子吸附性能研究[J]. 化学试剂, 2020, 42(3): 226-231. |
ZHONG Shaofeng, JI Wanli, LIU Xiaoyun. Preparation of chitosan/poly(methacylic acid) superfine fiber mat and application in chromium ion removal[J]. Chemical Reagents, 2020, 42(3): 226-231. | |
27 | 周丽莎, 李若男, 卞雨洁, 等. TOCNF与磁性羧甲基壳聚糖纳米粒子复合物的制备及吸附Pb2+的特性[J]. 化工进展, 2022, 41(2): 901-910. |
ZHOU Lisha, LI Ruonan, BIAN Yujie, et al. Preparation of TOCNF and magnetic carboxymethyl chitosan nanoparticles composite and adsorption properties of Pb2+ [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 901-910. | |
28 | 冯辉霞, 杨洋, 李全珍, 等. 硅藻土复合磁性壳聚糖对Cr(Ⅵ)离子吸附性能[J]. 精细化工, 2018, 35(4): 668-675. |
FENG Huixia, YANG Yang, LI Quanzhen, et al. Adsorption of Cr(Ⅵ) ions on diatomite composite magnetic chitosan material[J]. Fine Chemicals, 2018, 35(4): 668-675. | |
29 | 张宇, 李倩, 任欢杰. 壳聚糖载铜改性及吸附Cr(Ⅵ)的试验研究[J]. 湿法冶金, 2019, 38(1): 35-38. |
ZHANG Yu, LI Qian, REN Huanjie. Modifying of chitosan by supported Cu and adsorption of Cr(Ⅵ) in solution[J]. Hydrometallurgy of China, 2019, 38(1): 35-38. | |
30 | 王先利. 壳聚糖/有机酸复合物的制备及其除铬应用研究[D]. 东营: 中国石油大学(华东), 2017. |
WANG Xianli. Study on preparation of chitosan/organic acid complex and its application in chromium removal[D]. Dongying: China University of Petroleum (Huadong), 2017. | |
31 | WANG Xiangyu, DU Yi, MA Jun. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole[J]. Applied Surface Science, 2016, 390: 50-59. |
32 | HSINI Abdelghani, BENAFQIR Mohamed, NACIRI Yassine, et al. Synthesis of an arginine-functionalized polyaniline@FeOOH composite with high removal performance of hexavalent chromium ions from water: Adsorption behavior, regeneration and process capability studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126274. |
33 | 李强. 壳聚糖/TiO2复合吸附剂的制备及吸附特性研究[D]. 北京: 北京化工大学, 2007. |
LI Qiang. Preparation and adsorption characteristics of chitosan/TiO2 composite adsorbent[D]. Beijing: Beijing University of Chemical Technology, 2007. | |
34 | HAN Shiqi, ZHOU Xuelei, XIE Honghao, et al. Chitosan-based composite microspheres for treatment of hexavalent chromium and EBBR from aqueous solution[J]. Chemosphere, 2022, 305: 135486. |
35 | NESIC Aleksandra R, VELICKOVIC Sava J, ANTONOVIC Dusan G. Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye[J]. Journal of Hazardous Materials, 2012, 209/210: 256-263. |
36 | HALDORAI Yuvaraj, SHIM Jae Jin. Novel chitosan-TiO2 nanohybrid: Preparation, characterization, antibacterial, and photocatalytic properties[J]. Polymer Composites, 2014, 35(2): 327-333. |
37 | LI Qiang, SU Haijia, TAN Tianwei. Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances[J]. Biochemical Engineering Journal, 2008, 38(2): 212-218. |
38 | Ting LYU, MA Ronggang, KE Ke, et al. Synthesis of Gallic acid functionalized magnetic hydrogel beads for enhanced synergistic reduction and adsorption of aqueous chromium[J]. Chemical Engineering Journal, 2021, 408: 127327. |
39 | 夏远涛. 黑曲霉菌丝体-壳聚糖复合吸附剂的制备及对Cr(Ⅵ)的吸附机理研究[D]. 南宁: 广西民族大学, 2019. |
XIA Yuantao. Preparation of Aspergillus Niger mycelium-chitosan composite adsorbent and its adsorption mechanism for Cr( Ⅵ )[D]. Nanning: Guangxi University for Nationalities, 2019. | |
40 | CHEN Na, CAO Shiyu, ZHANG Lin, et al. Structural dependent Cr(Ⅵ) adsorption and reduction of biochar: Hydrochar versus pyrochar[J]. Science of the Total Environment, 2021, 783: 147084. |
41 | HUANG Xiaopeng, HOU Xiaojing, SONG Fahui, et al. Facet-dependent Cr( Ⅵ ) adsorption of hematite nanocrystals[J]. Environmental Science & Technology, 2016, 50(4): 1964-1972. |
42 | CHEN Lifeng, LIANG Haiwei, LU Yang, et al. Synthesis of an attapulgite Clay@Carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water[J]. Langmuir, 2011, 27(14): 8998-9004. |
43 | BHAUMIK Madhumita, MCCRINDLE Rob I, MAITY Arjun, et al. Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black 5 from aqueous solutions[J]. Journal of Colloid and Interface Science, 2016, 466: 442-451. |
44 | SAHNOUN Sousna, BOUTAHALA Mokhtar. Adsorption removal of tartrazine by chitosan/polyaniline composite: Kinetics and equilibrium studies[J]. International Journal of Biological Macromolecules, 2018, 114: 1345-1353. |
[1] | 周逸寰, 解强, 周红阳, 梁鼎成, 刘金昌. 基于分子模拟的多孔炭材料结构模型构建方法研究进展[J]. 化工进展, 2024, 43(3): 1535-1551. |
[2] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[3] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[4] | 王雨晴, 段钰锋, 王睿, 刘晓硕, 申镇. 乙醇改性钙基脱氯剂实验及动力学分析[J]. 化工进展, 2023, 42(11): 6053-6063. |
[5] | 刘玉龙, 胡南, 陈祥标, 陈森才, 曾冰勇, 丁德馨. 强碱性阴离子树脂对铀的循环吸附-淋洗性能及动力学分析[J]. 化工进展, 2023, 42(10): 5574-5583. |
[6] | 王胜楠, 郑旭. 空气取水用活性炭纤维复合吸附剂的研究[J]. 化工进展, 2023, 42(10): 5567-5573. |
[7] | 祁元, 徐欣蓉, 阮玮, 吴昊, 吴科, 周亚明, 杨宏旻. 改性活性碳纤维对苯胺吸附特性分析[J]. 化工进展, 2022, 41(S1): 622-630. |
[8] | 黄金杰, 毛林强, 张文艺. 原生质体融合制备三效工程菌HL及其溶藻机理[J]. 化工进展, 2022, 41(8): 4464-4472. |
[9] | 王乔逸, 陆少锋, 师文钊, 洪勋, 姚东霞, 张领. 界面聚合聚脲/聚氨酯复合壳体香精微胶囊的制备及性能[J]. 化工进展, 2022, 41(8): 4432-4440. |
[10] | 陈茂, 张鑫, 谢伟, 陈广辉, 李志礼. 生物炭/凹凸棒土的制备及对磺胺嘧啶的吸附[J]. 化工进展, 2022, 41(5): 2623-2635. |
[11] | 宋飞, 王君妍, 何林, 隋红, 李鑫钢. 表面活性剂强化重质油矿溶剂萃取残渣中残留溶剂鼓泡分离[J]. 化工进展, 2022, 41(4): 2007-2014. |
[12] | 王凯, 黄慧, 南翠红, 王跃社, 卢金玲. 油水分层流条件下腐蚀动力学特性模拟[J]. 化工进展, 2021, 40(S2): 40-47. |
[13] | 李彦霖, 程星星, 赵明亮, 王鲁元, 王志强. CO在成型催化剂上脱除NOx的反应动力学模型[J]. 化工进展, 2021, 40(S1): 245-252. |
[14] | 刘维燥, 胡金鹏, 刘清才, 李春. 硫酸铵与钛酸钙焙烧动力学[J]. 化工进展, 2021, 40(8): 4624-4630. |
[15] | 郑志行, 张家元, 李谦, 周浩宇. 气流床煤气化的Aspen Plus建模:平衡模型和动力学模型[J]. 化工进展, 2021, 40(8): 4165-4172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |