1 |
XIANG Haonan, HE Zhaoyi, TANG Haojie, et al. Healing behavior of thermo-oxygen aged asphalt based on molecular dynamics simulations[J]. Construction and Building Materials, 2022, 349: 128740.
|
2 |
裴建新. 沥青裂缝自修复微胶囊的制备与表征[J]. 化工进展, 2016, 35(9): 2898-2904.
|
|
PEI Jianxin. Preparation and properties of self-healing microcapsule for asphalt crack[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2898-2904.
|
3 |
徐建平, 赵毅, 梁乃兴, 等. 基于疲劳累积损伤的高模量沥青路面使用寿命预估[J]. 长安大学学报(自然科学版), 2018, 38(2): 26-33.
|
|
XU Jianping, ZHAO Yi, LIANG Naixing, et al. Life prediction of high modulus asphalt pavement based on fatigue cumulative damage[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(2): 26-33.
|
4 |
SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement[J]. Advances in Colloid and Interface Science, 2018, 256: 65-93.
|
5 |
HE Liang, LI Guannan, Songtao LYU, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119225.
|
6 |
GREENFIELD M L. Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011, 12(4): 325-341.
|
7 |
HALWACHI H K AL, YAKOVLEV D S, BOEK E S. Systematic optimization of asphaltene molecular structure and molecular weight using the quantitative molecular representation approach[J]. Energy & Fuels, 2012, 26(10): 6177-6185.
|
8 |
丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆: 重庆交通大学, 2013.
|
|
DING Yongjie. Study on chemical structure characteirstic of asphalt using molecular simulation[D]. Chongqing: Chongqing Jiaotong University, 2013.
|
9 |
何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093.
|
|
HE Liang, LI Guannan, ZHENG Yufeng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Review, 2020, 34(19): 19083-19093.
|
10 |
任瑞波, 薄剑, 赵品晖, 等. 沥青材料分子动力学模拟研究进展[J]. 山东建筑大学学报, 2020, 35(3): 61-68.
|
|
REN Ruibo, BO Jian, ZHAO Pinhui, et al. Progress in molecular dynamics simulation of asphalt materials[J]. Journal of Shandong Jianzhu University, 2020, 35(3): 61-68.
|
11 |
QU Xin, LIU Quan, WANG Chao, et al. Effect of co-production of renewable biomaterials on the performance of asphalt binder in macro and micro perspectives[J]. Materials, 2018, 11(2): 244.
|
12 |
余可心, 孙国强, 孙大权. 基于分子动力学模拟的沥青-再生剂扩散研究进展[J]. 石油沥青, 2021, 35(2): 27-34.
|
|
YU Kexin, SUN Guoqiang, SUN Daquan. Research progress of diffusion between asphalt and regenerant based on molecular dynamics simulation[J]. Petroleum Asphalt, 2021, 35(2): 27-34.
|
13 |
曹雪娟, 苏玥, 邓梅. 基于分子动力学模拟的聚合物改性剂与沥青相互作用研究[J]. 化工新型材料, 2021, 49(9): 234-239.
|
|
CAO Xuejuan, SU Yue, DENG Mei. Investigation on interaction between polymer modifier and asphalt based on molecular dynamics simulation[J]. New Chemical Materials, 2021, 49(9): 234-239.
|
14 |
YANG T Y, CHEN M Z, ZHOU X X, et al. Evaluation of thermal-mechanical properties of bio-oil regenerated aged asphalt[J]. Materials (Basel, Switzerland), 2018, 11(11): E2224.
|
15 |
DING Gongying, YU Xin, DONG Fuqiang, et al. Using silane coupling agent coating on acidic aggregate surfaces to enhance the adhesion between asphalt and aggregate: A molecular dynamics simulation[J]. Materials, 2020, 13(23): 5580.
|
16 |
CUI Wentian, HUANG Wenke, XIAO Zhicheng, et al. The effect of moisture on the adhesion energy and nanostructure of asphalt-aggregate interface system using molecular dynamics simulation[J]. Molecules, 2020, 25(18): 4165.
|
17 |
LUO Daisong, GUO Meng, TAN Yiqiu. Molecular simulation of minerals-asphalt interfacial interaction[J]. Minerals, 2018, 8(5): 176.
|
18 |
肖亚军, 刘龙旗, 毛雪松, 等. 基于分子动力学的再生沥青自愈合能力研究[J]. 公路, 2021, 66(7): 1-6.
|
|
XIAO Yajun, LIU Longqi, MAO Xuesong, et al. Research on self-healing capability of recycled asphalt based on molecular dynamics[J]. Highway, 2021, 66(7): 1-6.
|
19 |
XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10.
|
20 |
SUN Wei, WANG Hao. Self-healing of asphalt binder with cohesive failure: Insights from molecular dynamics simulation[J]. Construction and Building Materials, 2020, 262: 120538.
|
21 |
LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356.
|
22 |
ZHAO Z, WU S, ZHOU X, et al. Molecular simulations of properties changes on nano-layered double hydroxides-modified bitumen[J]. Materials Research Innovations, 2015, 19(S8): S8-556.
|
23 |
吴亦超. 基于动态剪切流变仪与分子动力学理论的多尺度沥青愈合行为研究[D]. 合肥: 合肥工业大学, 2021.
|
|
WU Yichao. Multi-scale asphalt healing behavior based on dynamic shear rheometer and molecular dynamics theory[D]. Hefei: Hefei University of Technology, 2021.
|
24 |
BANDURA A, KUBICKI J, SOFO J. Periodic density functional theory study of water adsorption on the α-quartz (101) surface[J]. Journal of Physical Chemistry C, 2011, 115: 5756-5766.
|
25 |
Breixo GÓMEZ-MEIJIDE, AJAM Harith, Pedro LASTRA-GONZÁLEZ, et al. Effect of ageing and RAP content on the induction healing properties of asphalt mixtures[J]. Construction and Building Materials, 2018, 179: 468-476.
|
26 |
杨健, 郭乃胜, 郭晓阳, 等. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(S2): 138-144.
|
|
YANG Jian, GUO Naisheng, GUO Xiaoyang, et al. Adhesion of foamed asphalt-aggregate interface based on molecular dynamics[J]. Materials Review, 2021, 35(S2): 138-144.
|
27 |
王吉, 郑传峰. 沥青混合料界面黏附黏结效应分子动力学研究[J]. 路基工程, 2021(2): 15-21.
|
|
WANG Ji, ZHENG Chuanfeng. Study on molecular dynamics of interfacial adhesion and cohesion of asphalt mixture[J]. Subgrade Engineering, 2021(2): 15-21.
|
28 |
邱延峻, 苏婷, 郑鹏飞, 等. 基于分子模拟的沥青胶结料物理老化机理研究[J]. 建筑材料学报, 2020, 23(6): 1464-1470.
|
|
QIU Yanjun, SU Ting, ZHENG Pengfei, et al. Physical aging mechanism of asphalt binder based on molecular simulation[J]. Journal of Building Materials, 2020, 23(6): 1464-1470.
|
29 |
单超. 基于分子模拟技术的沥青-矿料界面力学性能研究[D]. 长春: 吉林大学, 2021.
|
|
SHAN Chao. Study on mechanical properties of asphalt-mineral interface based on molecular simulation technology[D]. Changchun: Jilin University, 2021.
|
30 |
汤文, 王基双, 吕悦晶. 基于分子动力学的沥青自愈合行为研究[J]. 武汉科技大学学报, 2020, 43(2): 123-127.
|
|
TANG Wen, WANG Jishuang, Yuejing LYU. Study on self-healing behavior of asphalt binder based on molecular dynamics[J]. Journal of Wuhan University of Science and Technology, 2020, 43(2): 123-127.
|
31 |
朱建勇. 沥青胶结料自愈合行为的分子动力学模拟[J]. 建筑材料学报, 2018, 21(3): 433-439.
|
|
ZHU Jianyong. Molecular dynamic simulation of self-healing behavior of asphalt binder[J]. Journal of Building Materials, 2018, 21(3): 433-439.
|
32 |
朱建勇, 何兆益. 抗剥落剂与沥青相容性的分子动力学研究[J]. 公路交通科技, 2016, 33(1): 34-40.
|
|
ZHU Jianyong, HE Zhaoyi. Research of compatiblity of asphalt and anti-stripping agent using molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 34-40.
|
33 |
罗磊. 沥青与矿料界面相互作用的分子动力学模拟研究[D]. 西安: 长安大学, 2021.
|
|
LUO Lei. Molecular dynamics simulation of asphalt-aggregate interfacial interaction[D]. Xi'an: Changan University, 2021.
|
34 |
王吉. 沥青材料自愈合行为的分子动力学模拟[D]. 长春: 吉林大学, 2021.
|
|
WANG Ji. Molecular dynamics simulation of self-healing behavior of asphalt materials[D]. Changchun: Jilin University, 2021.
|
35 |
WOOL R P, O'CONNOR K M. A theory crack healing in polymers[J]. Journal of Applied Physics, 1981, 52(10): 5953-5963.
|
36 |
BHASIN A, BOMMAVARAM R, GREENFIELD M L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492.
|
37 |
LUO L, CHU L J, FWA T. Molecular dynamics analysis of oxidative aging effects on thermodynamic and interfacial bonding properties of asphalt mixtures[J]. Construction and Building Materials, 2021, 269: 121299.
|
38 |
GONG Yan, XU Jian, YAN Erhu, et al. The self-healing performance of carbon-based nanomaterials modified asphalt binders based on molecular dynamics simulations[J]. Frontiers in Materials, 2021, 7: 599551.
|