化工进展 ›› 2023, Vol. 42 ›› Issue (6): 3157-3166.DOI: 10.16085/j.issn.1000-6613.2022-1404
杨发容1(), 顾丽莉1(), 刘洋1, 李伟雪1, 蔡洁云2, 王惠平2
收稿日期:
2022-07-26
修回日期:
2022-08-31
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
顾丽莉
作者简介:
杨发容(1996—),女,硕士研究生,研究方向为天然产物的分离与提纯。E-mail:906397946@qq.com。
基金资助:
YANG Farong1(), GU Lili1(), LIU Yang1, LI Weixue1, CAI Jieyun2, WANG Huiping2
Received:
2022-07-26
Revised:
2022-08-31
Online:
2023-06-25
Published:
2023-06-29
Contact:
GU Lili
摘要:
建立了烟叶中两种三嗪类除草剂残留的分子印迹固相萃取-高效液相色谱(MISPE-HPLC)检测方法。利用计算机模拟技术筛选最佳功能单体,确定模板(TER)与单体(AA)的最优结合比例,以模拟结果为依据,采用沉淀聚合制备了特丁津分子印迹聚合物。对比了计算机模拟复合物与实验制备的TER-MIPs红外光谱图,分析表明,两者的主要吸收基团出峰位置一致。考察了MIPs对模板分子的吸附性能,结果显示,MIPs对TER及其结构类似物具有良好的特异性吸附能力。将TER-MIPs作为固相萃取填料,制备TER-MISPE柱对加标烟叶进行前处理,用高效液相色谱(HPLC)分析前处理液。结果表明,MISPE对特丁津及特丁通的富集效果较好,两种三嗪类除草剂的回收率为84.29%~96.64%,RSD为1.19%~1.70%(n=3),该方法满足烟叶中特丁津及特丁通两种三嗪类农药残留的同时检测,为烟叶及复杂基质农作物中三嗪类除草剂的分析检测提供了支撑。
中图分类号:
杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166.
YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166.
时间/min | 乙腈/% | 水/% |
---|---|---|
0~1 | 50 | 50 |
1~2 | 40 | 60 |
2~14 | 45 | 55 |
14~25 | 65 | 35 |
表1 梯度洗脱条件
时间/min | 乙腈/% | 水/% |
---|---|---|
0~1 | 50 | 50 |
1~2 | 40 | 60 |
2~14 | 45 | 55 |
14~25 | 65 | 35 |
模板/单体 | 质子供体 | 所在位置 | 质子受体 | 所在位置 | 氢键数目 |
---|---|---|---|---|---|
TER | H25、H28 | 亚氨基 | N4、N6 | 三嗪环 | 4 |
AA | H9 | 羧基 | O1、O2 | 羧基 | 3 |
MAA | H12 | 羧基 | O1、O2 | 羧基 | 3 |
AM | H8 | 氨基 | O1 | 羰基 | 2 |
4-VP | — | — | N1 | 吡啶环 | 1 |
2-VP | — | — | N8 | 吡啶环 | 1 |
MMA | — | — | O4 | 羰基 | 1 |
4-VYL | H19 | 羧基 | O2 | 羧基 | 2 |
表2 TER与7种功能单体的潜在结合位点与至多结合氢键数
模板/单体 | 质子供体 | 所在位置 | 质子受体 | 所在位置 | 氢键数目 |
---|---|---|---|---|---|
TER | H25、H28 | 亚氨基 | N4、N6 | 三嗪环 | 4 |
AA | H9 | 羧基 | O1、O2 | 羧基 | 3 |
MAA | H12 | 羧基 | O1、O2 | 羧基 | 3 |
AM | H8 | 氨基 | O1 | 羰基 | 2 |
4-VP | — | — | N1 | 吡啶环 | 1 |
2-VP | — | — | N8 | 吡啶环 | 1 |
MMA | — | — | O4 | 羰基 | 1 |
4-VYL | H19 | 羧基 | O2 | 羧基 | 2 |
复合物 | 结合能/kJ·mol-1 | 氢键数目 | 模板与单体结合比例 |
---|---|---|---|
TER-AA | 124.833 | 3 | 1∶3 |
TER-2VP | 38.265 | 1 | 1∶1 |
TER-4VP | 77.533 | 2 | 1∶2 |
TER-4VYL | 83.981 | 2 | 1∶2 |
TER-AM | 57.656 | 1 | 1∶1 |
TER-MAA | 53.167 | 1 | 1∶1 |
TER-MMA | 60.711 | 2 | 1∶2 |
表3 TER与7种功能单体相互作用的作用能(ΔE)和氢键数
复合物 | 结合能/kJ·mol-1 | 氢键数目 | 模板与单体结合比例 |
---|---|---|---|
TER-AA | 124.833 | 3 | 1∶3 |
TER-2VP | 38.265 | 1 | 1∶1 |
TER-4VP | 77.533 | 2 | 1∶2 |
TER-4VYL | 83.981 | 2 | 1∶2 |
TER-AM | 57.656 | 1 | 1∶1 |
TER-MAA | 53.167 | 1 | 1∶1 |
TER-MMA | 60.711 | 2 | 1∶2 |
亲和位点类型 | 拟合参数 | TER-MIPs |
---|---|---|
高亲和位点 | Scatchard模型方程 | y=-0.00924x+0.05551 |
相关系数(R2) | 0.99992 | |
K/µg·mL-1 | 108.23 | |
Qmax/µg·mg-1 | 6.01 | |
低亲和位点 | Scatchard模型方程 | y=-0.00184x+0.04593 |
相关系数(R2) | 0.69822 | |
K/µg·mL-1 | 543.47 | |
Qmax/µg·mg-1 | 24.96 |
表4 MIPs静态吸附曲线的Scatchard分析及亲和位点分布
亲和位点类型 | 拟合参数 | TER-MIPs |
---|---|---|
高亲和位点 | Scatchard模型方程 | y=-0.00924x+0.05551 |
相关系数(R2) | 0.99992 | |
K/µg·mL-1 | 108.23 | |
Qmax/µg·mg-1 | 6.01 | |
低亲和位点 | Scatchard模型方程 | y=-0.00184x+0.04593 |
相关系数(R2) | 0.69822 | |
K/µg·mL-1 | 543.47 | |
Qmax/µg·mg-1 | 24.96 |
目标物 | 标准曲线 | 线性范围/µg·mL-1 | R2 |
---|---|---|---|
SMT | y=132.17x+42.572 | 0.1~5 | 0.9994 |
SIE | y=134.02x+0.3553 | 0.1~5 | 0.9996 |
TER | y=111.28x+0.9515 | 0.1~5 | 0.9996 |
TBT | y=131.36x+2.8699 | 0.1~5 | 0.9998 |
PRE | y=130.42x+1.1421 | 0.1~5 | 0.9995 |
DIP | y=70.982x+1.5388 | 0.1~5 | 0.9997 |
表5 六种三嗪类农药的标准曲线及相关系数
目标物 | 标准曲线 | 线性范围/µg·mL-1 | R2 |
---|---|---|---|
SMT | y=132.17x+42.572 | 0.1~5 | 0.9994 |
SIE | y=134.02x+0.3553 | 0.1~5 | 0.9996 |
TER | y=111.28x+0.9515 | 0.1~5 | 0.9996 |
TBT | y=131.36x+2.8699 | 0.1~5 | 0.9998 |
PRE | y=130.42x+1.1421 | 0.1~5 | 0.9995 |
DIP | y=70.982x+1.5388 | 0.1~5 | 0.9997 |
农药名称 | 添加水平/µg·g-1 | 回收率/% | 相对标准偏差/% |
---|---|---|---|
SMT | 1 | 36.85 | 1.93 |
2 | 37.8 | 2.32 | |
4 | 35.5 | 2.57 | |
SIE | 1 | 38.16 | 1.62 |
2 | 37.8 | 2.43 | |
4 | 41.4 | 2.97 | |
TER | 1 | 92.25 | 1.19 |
2 | 87.75 | 1.57 | |
4 | 96.64 | 1.41 | |
TBT | 1 | 86.24 | 1.70 |
2 | 84.29 | 1.26 | |
4 | 86.28 | 1.38 | |
PRE | 1 | 74.34 | 2.25 |
2 | 67.5 | 2.27 | |
4 | 67.05 | 1.70 | |
DIP | 1 | 70.2 | 1.60 |
2 | 67.5 | 1.59 | |
4 | 69.75 | 1.09 |
表6 固相萃取的加标回收率和精密度(n=3)
农药名称 | 添加水平/µg·g-1 | 回收率/% | 相对标准偏差/% |
---|---|---|---|
SMT | 1 | 36.85 | 1.93 |
2 | 37.8 | 2.32 | |
4 | 35.5 | 2.57 | |
SIE | 1 | 38.16 | 1.62 |
2 | 37.8 | 2.43 | |
4 | 41.4 | 2.97 | |
TER | 1 | 92.25 | 1.19 |
2 | 87.75 | 1.57 | |
4 | 96.64 | 1.41 | |
TBT | 1 | 86.24 | 1.70 |
2 | 84.29 | 1.26 | |
4 | 86.28 | 1.38 | |
PRE | 1 | 74.34 | 2.25 |
2 | 67.5 | 2.27 | |
4 | 67.05 | 1.70 | |
DIP | 1 | 70.2 | 1.60 |
2 | 67.5 | 1.59 | |
4 | 69.75 | 1.09 |
1 | 林永涛. 特丁津、双氯芬酸分子印迹聚合物的合成、表征及应用[D]. 湘潭: 湘潭大学, 2011. |
LIN Yongtao. The synthesis, characterization and application of terbuthylazine and diclofenac imprinted polymers[D]. Xiangtan: Xiangtan University, 2011. | |
2 | POSPÍŠIL L, TRSKOVÁ R, FUOCO R, et al. Electrochemistry of s-triazine herbicides: reduction of atrazine and terbutylazine in aqueous solutions[J]. Journal of Electroanalytical Chemistry, 1995, 395(1/2): 189-193. |
3 | DEZFULI B S, SIMONI E, GIARI L, et al. Effects of experimental terbuthylazine exposure on the cells of Dicentrarchus labrax (L.)[J]. Chemosphere, 2006, 64(10): 1684-1694. |
4 | LOOS Robert, LOCORO Giovanni, COMERO Sara, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J]. Water Research, 2010, 44(14): 4115-4126. |
5 | ZHANG Hua, YUAN Yanan, SUN Yunyun, et al. An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography[J]. Analyst, 2018, 143(1): 175-181. |
6 | ZHENG Sijie, HE Man, CHEN Beibei, et al. Porous aromatic framework coated stir bar sorptive extraction coupled with high performance liquid chromatography for the analysis of triazine herbicides in maize samples[J]. Journal of Chromatography A, 2020, 1614: 460728. |
7 | LACHTER Daniela R, NUDI Adriana H, PORTO Giovana F, et al. Multiresidue method for triazines and pyrethroids determination by solid-phase extraction and gas chromatography-tandem mass spectrometry[J]. Journal of Environmental Science and Health, 2020, 55(10): 865-875. |
8 | FARAJZADEH Mir Ali, FERIDUNI Behruz, AFSHAR MOGADDAM Mohammad Reza. Extraction and preconcentration of triazine pesticides using rapid, simple, and disperser solventless microextraction technique followed by gas chromatography-nitrogen phosphorous detection[J]. European Journal of Lipid Science and Technology, 2017, 119(7): 1600208. |
9 | YAN Xiaohui, ZHONG Dongdong, ZHAN Yingying, et al. Polybenzimidazole solid-phase microextraction bar combined with thermal desorption-gas chromatography for determination of triazine herbicides in environmental waters[J]. Chromatographia, 2020, 83(2): 249-260. |
10 | 李昆, 黄笑晨, 李朔, 等. 高效液相色谱-串联质谱法测定婴幼儿米粉中29种三嗪类除草剂残留[J]. 分析试验室, 2021, 40(4): 422-428. |
LI Kun, HUANG Xiaochen, LI Shuo, et al. Determination of 29 triazine herbicides in infant rice flour by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(4): 422-428. | |
11 | 张海超, 马育松, 李颖, 等. 在线净化液相色谱-高分辨质谱法快速测定动物源性食品中均三嗪类药物及其代谢产物的残留量[J]. 分析测试学报, 2017, 36(3): 331-336. |
ZHANG Haichao, MA Yusong, LI Ying, et al. Rapid determination of diclazuril, toltrazuril and their metabolite residues in foods of animal origin by on-line cleanup liquid chromatography-high resolution mass spectrometry[J]. Journal of Instrumental Analysis, 2017, 36(3): 331-336. | |
12 | YANG Qing, CHEN Beibei, HE Man, et al. Sensitive determination of seven triazine herbicide in honey, tomato and environmental water samples by hollow fiber based liquid-liquid-liquid microextraction combined with sweeping micellar electrokinetic capillary chromatography[J]. Talanta, 2018, 186: 88-96. |
13 | FANG Rou, CHEN Guanhua, YI Lingxiao, et al. Determination of eight triazine herbicide residues in cereal and vegetable by micellar electrokinetic capillary chromatography with on-line sweeping[J]. Food Chemistry, 2014, 145: 41-48. |
14 | ULRICH P, WEIL L, NIESSNER R. 001 rapid fluorescence immunoassay (FIA) for the determination of terbuthylazine[J]. Fresenius’ Journal of Analytical Chemistry, 1992, 343(1): 50-51. |
15 | JING Lianpeng, YANG Farong, GU Lili, et al. Preparation and application of tebuconazole molecularly imprinted polymer for detection of pesticide residues in tobacco leaves[J]. Journal of Polymer Research, 2022, 29(5): 1-11. |
16 | SHI Xiaohong, ZUO Yu, JIA Xiaoqing, et al. A novel molecularly imprinted sensor based on gold nanoparticles/reduced graphene oxide/single-walled carbon nanotubes nanocomposite for the detection of pefloxacin[J]. International Journal of Electrochemical Science, 2020, 15: 9683-9697. |
17 | ZHANG Lianming, LUO Kui, LI Dan, et al. Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization[J]. Analytica Chimica Acta, 2020, 1136: 82-90. |
18 | RUTKOWSKA Małgorzata, Justyna PŁOTKA-WASYLKA, MORRISON Calum, et al. Application of molecularly imprinted polymers in analytical chiral separations and analysis[J]. TrAC Trends in Analytical Chemistry, 2018, 102: 91-102. |
19 | POURTAGHI Abbas, MOHAMMADINEJAD Arash, ASGHARIAN REZAEE Mitra, et al. Application of molecularly imprinted solid-phase extraction coupled with liquid chromatography method for detection of penicillin G in pasteurised milk samples[J]. International Journal of Dairy Technology, 2022, 75(1): 83-93. |
20 | ZHANG Ming, HE Juan, SHEN Yanzheng, et al. Application of pseudo-template molecularly imprinted polymers by atom transfer radical polymerization to the solid-phase extraction of pyrethroids[J]. Talanta, 2018, 178: 1011-1016. |
21 | 李子怡, 李志君, 顾丽莉, 等. 三唑酮分子印迹纳米球的制备及应用[J]. 化工进展, 2020, 39(7): 2706-2714. |
LI Ziyi, LI Zhijun, GU Lili, et al. Preparation and application of triazolone molecularly imprinted nano-spheres[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2706-2714. | |
22 | 冯格格, 王猛强, 李壮, 等. 磺酰脲类除草剂分子印迹聚合物制备及其应用[J]. 食品科学, 2022, 43(4): 305-314. |
FENG Gege, WANG Mengqiang, LI Zhuang, et al. Preparation and application of molecularly imprinted polymer for the detection of sulfonylurea herbicides[J]. Food Science, 2022, 43(4): 305-314. | |
23 | 巩碧钏, 胡秋辉, 苏安祥, 等. 三嗪类虚拟模板分子印迹聚合物的制备及其应用[J]. 食品科学, 2021, 42(12): 281-287. |
GONG Bichuan, HU Qiuhui, SU Anxiang, et al. Preparation and application of dummy template molecularly imprinted polymer in the detection of triazines in fruits and vegetables[J]. Food Science, 2021, 42(12): 281-287. | |
24 | 楚耀娟, 张雪娜, 向孝哲, 等. 分子印迹阵列固相微萃取用于检测果蔬中多种有机磷农药残留[J]. 食品科学, 2021, 42(6): 310-315. |
CHU Yaojuan, ZHANG Xuena, XIANG Xiaozhe, et al. Determination of multiple organophosphorus pesticide residues in fruits and vegetables by molecularly imprinted array solid phase microextraction[J]. Food Science, 2021, 42(6): 310-315. | |
25 | LI Ziyi, JING Lianpeng, GU Lili, et al. Preparation and application of highly sensitive myclobutanil sensor based on molecularly imprinted photonic crystals[J]. Polymer, 2021, 228: 123921. |
26 | TONG Zhenhao, HAN Yi, GU Lili, et al. Preparation and application of simetryn-imprinted nanoparticles in triazine herbicide residue analysis[J]. Journal of Separation Science, 2020, 43(6): 1107-1118. |
27 | 张进, 熊和琴, 姚桃花, 等. 分子印迹电化学传感器检测环境中特丁津研究[J]. 环境科学与技术, 2014, 37(5): 31-35. |
ZHANG Jin, XIONG Heqin, YAO Taohua, et al. A molecularly imprinted polymers electrochemical sensor for determination of terbuthylazine in environmental samples[J]. Environmental Science & Technology, 2014, 37(5): 31-35. | |
28 | AO Junjie, GU Jiaping, YUAN Tao, et al. Applying molecular modelling and experimental studies to develop molecularly imprinted polymer for domoic acid enrichment from both seawater and shellfish[J]. Chemosphere, 2018, 199: 98-106. |
29 | BATES Ferdia, CELA-PÉREZ María Concepción, KARIM Kal, et al. Virtual screening of receptor sites for molecularly imprinted polymers[J]. Macromolecular Bioscience, 2016, 16(8): 1170-1174. |
30 | 蒋旭红, 张汉辉, 周昱喆, 等. 喜树碱分子印迹聚合物的计算机模拟及性能[J]. 高分子材料科学与工程, 2021, 37(6): 99-108. |
JIANG Xuhong, ZHANG Hanhui, ZHOU Yuzhe, et al. Computer simulation and performance of camptothecin molecularly imprinted polymers[J]. Polymer Materials Science & Engineering, 2021, 37(6): 99-108. | |
31 | 张凯杰, 秦思楠, 赵春娟, 等. 莠去津分子印迹聚合物微球的制备及其吸附性能与在食品检测中的应用[J]. 食品科学, 2019, 40(20): 338-345. |
ZHANG Kaijie, QIN Sinan, ZHAO Chunjuan, et al. Preparation, adsorption performance and application of molecularly imprinted polymer microspheres for detection of atrazine in foods[J]. Food Science, 2019, 40(20): 338-345. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[9] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[12] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[13] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[14] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |