化工进展 ›› 2023, Vol. 42 ›› Issue (6): 3147-3156.DOI: 10.16085/j.issn.1000-6613.2022-1520
收稿日期:
2022-08-17
修回日期:
2022-09-29
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
赵毅
作者简介:
赵毅(1980—),男,教授,硕士生导师,研究方向为高性能沥青材料。E-mail:1585513635@qq.com。
基金资助:
ZHAO Yi1,2(), YANG Zhen3, ZHANG Xinwei4, WANG Gang4, YANG Xuan5
Received:
2022-08-17
Revised:
2022-09-29
Online:
2023-06-25
Published:
2023-06-29
Contact:
ZHAO Yi
摘要:
为研究在不同裂缝损伤和愈合温度条件下沥青的自愈合行为,通过分子动力学(MD)方法构建沥青分子模型,模拟70#基质沥青在温度313~333K、裂缝宽度10~50Å(1Å=0.1nm)条件下的自愈合行为,从沥青分子模型的密度、径向分布函数、玻璃化转变温度、内聚能密度以及溶解度参数验证了沥青分子模型的合理性;从定性(密度、均方位移)和定量(扩散系数、内聚能密度和自由体积分数)两个方面评价了沥青分子模型的自愈合性能。结果表明,自愈合温度为313~333K时,不同裂缝宽度的愈合模型内聚能密度波动范围在0.2%~3%,表明沥青分子的自愈合对该温度区间的温度变化不敏感;沥青分子模型裂缝宽度为30Å时,模型的愈合过程明显,且愈合效果也最好,推荐采用30Å作为70#基质沥青愈合模型的裂缝宽度。
中图分类号:
赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156.
ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156.
项目 | 针入度(25℃、100g、5s)/0.1mm | 延度(5cm/min、15℃)/cm | 软化点/℃ |
---|---|---|---|
70#基质沥青 | 65 | 130 | 49 |
技术标准 | 60~80 | >100 | ≥ 45 |
表1 沥青技术性能
项目 | 针入度(25℃、100g、5s)/0.1mm | 延度(5cm/min、15℃)/cm | 软化点/℃ |
---|---|---|---|
70#基质沥青 | 65 | 130 | 49 |
技术标准 | 60~80 | >100 | ≥ 45 |
项目 | 组分含量/% | |||
---|---|---|---|---|
胶质R | 沥青质As | 芳香分Ar | 饱和分S | |
70#基质沥青 | 37.71 | 22.40 | 22.39 | 17.50 |
技术要求 | 31~55 | >10 | 21~47 | 12~27 |
表2 沥青四组分试验结果
项目 | 组分含量/% | |||
---|---|---|---|---|
胶质R | 沥青质As | 芳香分Ar | 饱和分S | |
70#基质沥青 | 37.71 | 22.40 | 22.39 | 17.50 |
技术要求 | 31~55 | >10 | 21~47 | 12~27 |
组分 | 分子 | 分子名称 | 分子式 | 分子量 | 原子数 | 代码 |
---|---|---|---|---|---|---|
胶质 | 胶质A | Pyridinonhopane | C36H57N | 503.8 | 94 | a |
胶质B | Quinolinohopane | C40H59N | 553.9 | 100 | b | |
胶质C | Trimethylbenzeneoxane | C29H50O | 414.7 | 80 | c | |
胶质D | Benzobisbenzothiophene | C18H10S2 | 290.4 | 30 | d | |
胶质E | Thioisorenieratane | C40H60S | 573.0 | 101 | e | |
沥青质 | 沥青质A | Asphaltene-phenol | C42H54O | 574.9 | 97 | f |
沥青质B | Asphaltene-pyrrole | C66H81N | 888.4 | 148 | g | |
沥青质C | Asphaltene-thiophene | C51H62S | 707.1 | 114 | h | |
芳香分 | 芳香分A | PHPN | C35H44 | 464.7 | 79 | i |
芳香分B | DOCHN | C30H46 | 406.7 | 76 | j | |
饱和分 | 饱和分A | Squalane | C30H62 | 422.8 | 92 | k |
饱和分B | Hopane | C35H62 | 482.9 | 97 | l |
表3 沥青四组分分子式特征值
组分 | 分子 | 分子名称 | 分子式 | 分子量 | 原子数 | 代码 |
---|---|---|---|---|---|---|
胶质 | 胶质A | Pyridinonhopane | C36H57N | 503.8 | 94 | a |
胶质B | Quinolinohopane | C40H59N | 553.9 | 100 | b | |
胶质C | Trimethylbenzeneoxane | C29H50O | 414.7 | 80 | c | |
胶质D | Benzobisbenzothiophene | C18H10S2 | 290.4 | 30 | d | |
胶质E | Thioisorenieratane | C40H60S | 573.0 | 101 | e | |
沥青质 | 沥青质A | Asphaltene-phenol | C42H54O | 574.9 | 97 | f |
沥青质B | Asphaltene-pyrrole | C66H81N | 888.4 | 148 | g | |
沥青质C | Asphaltene-thiophene | C51H62S | 707.1 | 114 | h | |
芳香分 | 芳香分A | PHPN | C35H44 | 464.7 | 79 | i |
芳香分B | DOCHN | C30H46 | 406.7 | 76 | j | |
饱和分 | 饱和分A | Squalane | C30H62 | 422.8 | 92 | k |
饱和分B | Hopane | C35H62 | 482.9 | 97 | l |
组分 | 分子 | 分子量 | 原子数 | 模型 分子数 | 质量 分数/% | 模型 原子数 | 模型 比例/% |
---|---|---|---|---|---|---|---|
胶质 | A | 503.9 | 94 | 9 | 7.80 | 846 | 37.51 |
B | 533.9 | 100 | 9 | 8.54 | 900 | ||
C | 414.7 | 80 | 10 | 6.39 | 800 | ||
D | 290.4 | 30 | 10 | 4.97 | 300 | ||
E | 573 | 101 | 10 | 9.81 | 1010 | ||
沥青质 | A | 574.9 | 97 | 6 | 5.91 | 582 | 22.31 |
B | 888.4 | 148 | 6 | 9.13 | 888 | ||
C | 707.1 | 114 | 6 | 7.27 | 684 | ||
芳香分 | A | 464.7 | 79 | 15 | 11.94 | 1185 | 22.39 |
B | 406.7 | 76 | 15 | 10.45 | 1140 | ||
饱和分 | A | 422.8 | 92 | 12 | 8.69 | 1104 | 17.79 |
B | 482.9 | 97 | 11 | 9.10 | 1067 | ||
总和 | — | — | — | 119 | 100 | 10506 | 100 |
表4 70#基质沥青分子模型各组分分配比
组分 | 分子 | 分子量 | 原子数 | 模型 分子数 | 质量 分数/% | 模型 原子数 | 模型 比例/% |
---|---|---|---|---|---|---|---|
胶质 | A | 503.9 | 94 | 9 | 7.80 | 846 | 37.51 |
B | 533.9 | 100 | 9 | 8.54 | 900 | ||
C | 414.7 | 80 | 10 | 6.39 | 800 | ||
D | 290.4 | 30 | 10 | 4.97 | 300 | ||
E | 573 | 101 | 10 | 9.81 | 1010 | ||
沥青质 | A | 574.9 | 97 | 6 | 5.91 | 582 | 22.31 |
B | 888.4 | 148 | 6 | 9.13 | 888 | ||
C | 707.1 | 114 | 6 | 7.27 | 684 | ||
芳香分 | A | 464.7 | 79 | 15 | 11.94 | 1185 | 22.39 |
B | 406.7 | 76 | 15 | 10.45 | 1140 | ||
饱和分 | A | 422.8 | 92 | 12 | 8.69 | 1104 | 17.79 |
B | 482.9 | 97 | 11 | 9.10 | 1067 | ||
总和 | — | — | — | 119 | 100 | 10506 | 100 |
沥青种类 | CED/J·cm-3 | SP/(J·cm-3)1/2 |
---|---|---|
70#基质沥青 | 254 | 15.9 |
参考值 | 234~529 | 13.3~22.5[ |
表5 模型CED和SP测算比照
沥青种类 | CED/J·cm-3 | SP/(J·cm-3)1/2 |
---|---|---|
70#基质沥青 | 254 | 15.9 |
参考值 | 234~529 | 13.3~22.5[ |
裂缝宽度/Å | 温度/K | 自由体积 | 原子占用体积 | FFV/% |
---|---|---|---|---|
10 | 313 | 77267.19 | 125801.34 | 38.05 |
323 | 77247.33 | 125769.34 | 38.05 | |
333 | 78227.10 | 125807.38 | 38.34 | |
30 | 313 | 75845.83 | 125785.55 | 37.62 |
323 | 78112.28 | 125814.18 | 38.30 | |
333 | 78929.77 | 125797.60 | 38.55 | |
50 | 313 | 73915.30 | 125800.50 | 37.01 |
323 | 75050.53 | 125767.53 | 37.37 | |
333 | 75810.68 | 125808.70 | 37.60 | |
70#(单晶胞) | — | 54694.88 | 62944.17 | 46.49 |
表6 沥青模型自由体积分数计算结果
裂缝宽度/Å | 温度/K | 自由体积 | 原子占用体积 | FFV/% |
---|---|---|---|---|
10 | 313 | 77267.19 | 125801.34 | 38.05 |
323 | 77247.33 | 125769.34 | 38.05 | |
333 | 78227.10 | 125807.38 | 38.34 | |
30 | 313 | 75845.83 | 125785.55 | 37.62 |
323 | 78112.28 | 125814.18 | 38.30 | |
333 | 78929.77 | 125797.60 | 38.55 | |
50 | 313 | 73915.30 | 125800.50 | 37.01 |
323 | 75050.53 | 125767.53 | 37.37 | |
333 | 75810.68 | 125808.70 | 37.60 | |
70#(单晶胞) | — | 54694.88 | 62944.17 | 46.49 |
1 | XIANG Haonan, HE Zhaoyi, TANG Haojie, et al. Healing behavior of thermo-oxygen aged asphalt based on molecular dynamics simulations[J]. Construction and Building Materials, 2022, 349: 128740. |
2 | 裴建新. 沥青裂缝自修复微胶囊的制备与表征[J]. 化工进展, 2016, 35(9): 2898-2904. |
PEI Jianxin. Preparation and properties of self-healing microcapsule for asphalt crack[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2898-2904. | |
3 | 徐建平, 赵毅, 梁乃兴, 等. 基于疲劳累积损伤的高模量沥青路面使用寿命预估[J]. 长安大学学报(自然科学版), 2018, 38(2): 26-33. |
XU Jianping, ZHAO Yi, LIANG Naixing, et al. Life prediction of high modulus asphalt pavement based on fatigue cumulative damage[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(2): 26-33. | |
4 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement[J]. Advances in Colloid and Interface Science, 2018, 256: 65-93. |
5 | HE Liang, LI Guannan, Songtao LYU, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119225. |
6 | GREENFIELD M L. Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011, 12(4): 325-341. |
7 | HALWACHI H K AL, YAKOVLEV D S, BOEK E S. Systematic optimization of asphaltene molecular structure and molecular weight using the quantitative molecular representation approach[J]. Energy & Fuels, 2012, 26(10): 6177-6185. |
8 | 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆: 重庆交通大学, 2013. |
DING Yongjie. Study on chemical structure characteirstic of asphalt using molecular simulation[D]. Chongqing: Chongqing Jiaotong University, 2013. | |
9 | 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093. |
HE Liang, LI Guannan, ZHENG Yufeng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Review, 2020, 34(19): 19083-19093. | |
10 | 任瑞波, 薄剑, 赵品晖, 等. 沥青材料分子动力学模拟研究进展[J]. 山东建筑大学学报, 2020, 35(3): 61-68. |
REN Ruibo, BO Jian, ZHAO Pinhui, et al. Progress in molecular dynamics simulation of asphalt materials[J]. Journal of Shandong Jianzhu University, 2020, 35(3): 61-68. | |
11 | QU Xin, LIU Quan, WANG Chao, et al. Effect of co-production of renewable biomaterials on the performance of asphalt binder in macro and micro perspectives[J]. Materials, 2018, 11(2): 244. |
12 | 余可心, 孙国强, 孙大权. 基于分子动力学模拟的沥青-再生剂扩散研究进展[J]. 石油沥青, 2021, 35(2): 27-34. |
YU Kexin, SUN Guoqiang, SUN Daquan. Research progress of diffusion between asphalt and regenerant based on molecular dynamics simulation[J]. Petroleum Asphalt, 2021, 35(2): 27-34. | |
13 | 曹雪娟, 苏玥, 邓梅. 基于分子动力学模拟的聚合物改性剂与沥青相互作用研究[J]. 化工新型材料, 2021, 49(9): 234-239. |
CAO Xuejuan, SU Yue, DENG Mei. Investigation on interaction between polymer modifier and asphalt based on molecular dynamics simulation[J]. New Chemical Materials, 2021, 49(9): 234-239. | |
14 | YANG T Y, CHEN M Z, ZHOU X X, et al. Evaluation of thermal-mechanical properties of bio-oil regenerated aged asphalt[J]. Materials (Basel, Switzerland), 2018, 11(11): E2224. |
15 | DING Gongying, YU Xin, DONG Fuqiang, et al. Using silane coupling agent coating on acidic aggregate surfaces to enhance the adhesion between asphalt and aggregate: A molecular dynamics simulation[J]. Materials, 2020, 13(23): 5580. |
16 | CUI Wentian, HUANG Wenke, XIAO Zhicheng, et al. The effect of moisture on the adhesion energy and nanostructure of asphalt-aggregate interface system using molecular dynamics simulation[J]. Molecules, 2020, 25(18): 4165. |
17 | LUO Daisong, GUO Meng, TAN Yiqiu. Molecular simulation of minerals-asphalt interfacial interaction[J]. Minerals, 2018, 8(5): 176. |
18 | 肖亚军, 刘龙旗, 毛雪松, 等. 基于分子动力学的再生沥青自愈合能力研究[J]. 公路, 2021, 66(7): 1-6. |
XIAO Yajun, LIU Longqi, MAO Xuesong, et al. Research on self-healing capability of recycled asphalt based on molecular dynamics[J]. Highway, 2021, 66(7): 1-6. | |
19 | XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
20 | SUN Wei, WANG Hao. Self-healing of asphalt binder with cohesive failure: Insights from molecular dynamics simulation[J]. Construction and Building Materials, 2020, 262: 120538. |
21 | LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
22 | ZHAO Z, WU S, ZHOU X, et al. Molecular simulations of properties changes on nano-layered double hydroxides-modified bitumen[J]. Materials Research Innovations, 2015, 19(S8): S8-556. |
23 | 吴亦超. 基于动态剪切流变仪与分子动力学理论的多尺度沥青愈合行为研究[D]. 合肥: 合肥工业大学, 2021. |
WU Yichao. Multi-scale asphalt healing behavior based on dynamic shear rheometer and molecular dynamics theory[D]. Hefei: Hefei University of Technology, 2021. | |
24 | BANDURA A, KUBICKI J, SOFO J. Periodic density functional theory study of water adsorption on the α-quartz (101) surface[J]. Journal of Physical Chemistry C, 2011, 115: 5756-5766. |
25 | Breixo GÓMEZ-MEIJIDE, AJAM Harith, Pedro LASTRA-GONZÁLEZ, et al. Effect of ageing and RAP content on the induction healing properties of asphalt mixtures[J]. Construction and Building Materials, 2018, 179: 468-476. |
26 | 杨健, 郭乃胜, 郭晓阳, 等. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(S2): 138-144. |
YANG Jian, GUO Naisheng, GUO Xiaoyang, et al. Adhesion of foamed asphalt-aggregate interface based on molecular dynamics[J]. Materials Review, 2021, 35(S2): 138-144. | |
27 | 王吉, 郑传峰. 沥青混合料界面黏附黏结效应分子动力学研究[J]. 路基工程, 2021(2): 15-21. |
WANG Ji, ZHENG Chuanfeng. Study on molecular dynamics of interfacial adhesion and cohesion of asphalt mixture[J]. Subgrade Engineering, 2021(2): 15-21. | |
28 | 邱延峻, 苏婷, 郑鹏飞, 等. 基于分子模拟的沥青胶结料物理老化机理研究[J]. 建筑材料学报, 2020, 23(6): 1464-1470. |
QIU Yanjun, SU Ting, ZHENG Pengfei, et al. Physical aging mechanism of asphalt binder based on molecular simulation[J]. Journal of Building Materials, 2020, 23(6): 1464-1470. | |
29 | 单超. 基于分子模拟技术的沥青-矿料界面力学性能研究[D]. 长春: 吉林大学, 2021. |
SHAN Chao. Study on mechanical properties of asphalt-mineral interface based on molecular simulation technology[D]. Changchun: Jilin University, 2021. | |
30 | 汤文, 王基双, 吕悦晶. 基于分子动力学的沥青自愈合行为研究[J]. 武汉科技大学学报, 2020, 43(2): 123-127. |
TANG Wen, WANG Jishuang, Yuejing LYU. Study on self-healing behavior of asphalt binder based on molecular dynamics[J]. Journal of Wuhan University of Science and Technology, 2020, 43(2): 123-127. | |
31 | 朱建勇. 沥青胶结料自愈合行为的分子动力学模拟[J]. 建筑材料学报, 2018, 21(3): 433-439. |
ZHU Jianyong. Molecular dynamic simulation of self-healing behavior of asphalt binder[J]. Journal of Building Materials, 2018, 21(3): 433-439. | |
32 | 朱建勇, 何兆益. 抗剥落剂与沥青相容性的分子动力学研究[J]. 公路交通科技, 2016, 33(1): 34-40. |
ZHU Jianyong, HE Zhaoyi. Research of compatiblity of asphalt and anti-stripping agent using molecular dynamics[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 34-40. | |
33 | 罗磊. 沥青与矿料界面相互作用的分子动力学模拟研究[D]. 西安: 长安大学, 2021. |
LUO Lei. Molecular dynamics simulation of asphalt-aggregate interfacial interaction[D]. Xi'an: Changan University, 2021. | |
34 | 王吉. 沥青材料自愈合行为的分子动力学模拟[D]. 长春: 吉林大学, 2021. |
WANG Ji. Molecular dynamics simulation of self-healing behavior of asphalt materials[D]. Changchun: Jilin University, 2021. | |
35 | WOOL R P, O'CONNOR K M. A theory crack healing in polymers[J]. Journal of Applied Physics, 1981, 52(10): 5953-5963. |
36 | BHASIN A, BOMMAVARAM R, GREENFIELD M L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. |
37 | LUO L, CHU L J, FWA T. Molecular dynamics analysis of oxidative aging effects on thermodynamic and interfacial bonding properties of asphalt mixtures[J]. Construction and Building Materials, 2021, 269: 121299. |
38 | GONG Yan, XU Jian, YAN Erhu, et al. The self-healing performance of carbon-based nanomaterials modified asphalt binders based on molecular dynamics simulations[J]. Frontiers in Materials, 2021, 7: 599551. |
[1] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[2] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[5] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[6] | 欧阳素芳, 周道伟, 黄伟, 贾凤. 新型耐迁移橡胶防老剂的研究进展[J]. 化工进展, 2023, 42(7): 3708-3719. |
[7] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[8] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[9] | 陆诗建, 张媛媛, 吴文华, 杨菲, 刘玲, 康国俊, 李清方, 陈宏福, 王宁, 王风, 张娟娟. 百万吨级CO2捕集项目亚硝胺污染物扩散健康风险评估[J]. 化工进展, 2023, 42(6): 3209-3216. |
[10] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[11] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
[12] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[13] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[14] | 赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813. |
[15] | 李晶晶, 赵曜, 徐沣驰, 李康建. 不同径流冲刷作用下多孔炉渣沥青混合料重金属的浸出特性[J]. 化工进展, 2023, 42(10): 5520-5530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |