化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1895-1906.DOI: 10.16085/j.issn.1000-6613.2022-1030
蔡江涛1,2(), 候刘华1, 兰雨金1, 张晨陈1, 刘国阳1, 朱由余1, 张建兰1,2, 赵世永1,2, 张亚婷1,2()
收稿日期:
2022-06-02
修回日期:
2022-07-06
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
张亚婷
作者简介:
蔡江涛(1973—),女,副教授,硕士生导师,研究方向为功能炭材料及其复合材料的制备与应用。E-mail:caijt@xust.edu.cn。
基金资助:
CAI Jiangtao1,2(), HOU Liuhua1, LAN Yujin1, ZHANG Chenchen1, LIU Guoyang1, ZHU Youyu1, ZHANG Jianlan1,2, ZHAO Shiyong1,2, ZHANG Yating1,2()
Received:
2022-06-02
Revised:
2022-07-06
Online:
2023-04-25
Published:
2023-05-08
Contact:
ZHANG Yating
摘要:
沥青是由富含稠环芳烃的系列碳氢化合物及其非金属衍生物组成的复杂混合物,具有较高的碳含量。开发沥青作为炭材料前体,用于制备超级电容器炭电极材料,既拓展了沥青的应用市场及提升其附加值,更是响应国家对于新型能源利用的需求。本文首先对超级电容器的储能机理进行了阐述,探讨了影响超级电容器用炭材料电化学性能的结构因素及规律,概述了沥青的组成、结构模型、来源及其应用。然后综述了沥青基多孔炭用作超级电容器电极材料的研究进展,并对活化法、模板法及熔盐法等方法制备沥青基多孔炭的特点与进展进行了分析,着重对沥青基多孔炭材料的改性研究进行了总结。最后指出了沥青基多孔炭材料作为超级电容器电极材料的发展优势及不足,建议对沥青原料进行预处理联合炭化后脱除金属杂原子,以获得稳定长循环寿命的电容炭;加强对沥青中四组分炭化成炭规律的研究,以提高沥青基超容炭材料的成炭率;KOH活化法与其他活化方法相结合,以期在获得高性能活性炭基础上减少对设备的损耗与环境的影响。
中图分类号:
蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906.
CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906.
种类 | 常见分子结构模型 | 已工业化用途 |
---|---|---|
石油沥青 | 燃料、交通运输(道路、铁路、航空等)、建筑业、工业(采掘业、制造业)、农业、水利工程、民用等 | |
煤焦沥青 | 生产橡胶、塑料、合成纤维、染料、医药、耐高温材料等的重要原料 | |
天然沥青 | 高级公路的改性调和沥青、钻井助剂、高软化点特种沥青 |
表1 三种不同来源沥青的分子结构模型及其应用
种类 | 常见分子结构模型 | 已工业化用途 |
---|---|---|
石油沥青 | 燃料、交通运输(道路、铁路、航空等)、建筑业、工业(采掘业、制造业)、农业、水利工程、民用等 | |
煤焦沥青 | 生产橡胶、塑料、合成纤维、染料、医药、耐高温材料等的重要原料 | |
天然沥青 | 高级公路的改性调和沥青、钻井助剂、高软化点特种沥青 |
材料 | 制备方法 | 比表面积/m2·g-1 | 孔容积/cm3·g-1 | 电极体系 | 电流密度/A·g-1 | 比电容/F·g-1 | 循环次数 | 电容保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
PCM | 水蒸气活化 | 1638 | 0.153 | 两电极 | 1 | 252 | 10000 | 97.3 | [ |
α-CLR-8h-900-4h | CO2活化 | 2179.3 | 2.61 | 三电极 | 0.1 | 151 | — | — | [ |
HPC75 | KOH活化 | 3473 | 1.714 | 三电极 | 1 | 339 | 10000 | 92.8 | [ |
WPC-850 | Na2CO3活化 | 1912 | 0.94 | 三电极 | 0.05 | 232 | 5000 | 97.5 | [ |
EBC800 | K2CO3活化 | 854 | 0.48 | 三电极 | 0.106① | 340 | 50000 | 98.1 | [ |
HPC1∶2∶3 | SiO2模板 | 1952.6 | 1.15 | 三电极 | 1 | 341 | 10000 | — | [ |
HPCNC-700-a | MgO模板 | 1777 | 0.94 | 三电极 | 1 | 380 | — | — | [ |
C7 | ZnO模板 | 1537 | — | 两电极 | 5② | 200.5 | 8000 | 95 | [ |
PC18-800 | Mg(OH)2模板 | 3145 | 1.68 | 三电极 | 0.05 | 272 | 10000 | 96.69 | [ |
HPC4/4 | 三聚氰胺 软模板 | 2038 | — | 三电极 | 0.05 | 221 | 5000 | 95.3 | [ |
IPC-2-0.2-8 | MCC模板 | 3305 | 1.66 | 三电极 | 1 | 308 | 20000 | 101.7 | [ |
HPCs | NaCl-KCl | 2227 | 1.43 | 两电极 | 0.05 | 265 | 10000 | 91.1 | [ |
HPCs-5-800 | ZnCl2-NaCl | 2984 | 2.2 | 三电极 | 1 | 327 | 10000 | 94 | [ |
表2 不同制备方法所得沥青基多孔炭材料的结构与性能
材料 | 制备方法 | 比表面积/m2·g-1 | 孔容积/cm3·g-1 | 电极体系 | 电流密度/A·g-1 | 比电容/F·g-1 | 循环次数 | 电容保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
PCM | 水蒸气活化 | 1638 | 0.153 | 两电极 | 1 | 252 | 10000 | 97.3 | [ |
α-CLR-8h-900-4h | CO2活化 | 2179.3 | 2.61 | 三电极 | 0.1 | 151 | — | — | [ |
HPC75 | KOH活化 | 3473 | 1.714 | 三电极 | 1 | 339 | 10000 | 92.8 | [ |
WPC-850 | Na2CO3活化 | 1912 | 0.94 | 三电极 | 0.05 | 232 | 5000 | 97.5 | [ |
EBC800 | K2CO3活化 | 854 | 0.48 | 三电极 | 0.106① | 340 | 50000 | 98.1 | [ |
HPC1∶2∶3 | SiO2模板 | 1952.6 | 1.15 | 三电极 | 1 | 341 | 10000 | — | [ |
HPCNC-700-a | MgO模板 | 1777 | 0.94 | 三电极 | 1 | 380 | — | — | [ |
C7 | ZnO模板 | 1537 | — | 两电极 | 5② | 200.5 | 8000 | 95 | [ |
PC18-800 | Mg(OH)2模板 | 3145 | 1.68 | 三电极 | 0.05 | 272 | 10000 | 96.69 | [ |
HPC4/4 | 三聚氰胺 软模板 | 2038 | — | 三电极 | 0.05 | 221 | 5000 | 95.3 | [ |
IPC-2-0.2-8 | MCC模板 | 3305 | 1.66 | 三电极 | 1 | 308 | 20000 | 101.7 | [ |
HPCs | NaCl-KCl | 2227 | 1.43 | 两电极 | 0.05 | 265 | 10000 | 91.1 | [ |
HPCs-5-800 | ZnCl2-NaCl | 2984 | 2.2 | 三电极 | 1 | 327 | 10000 | 94 | [ |
材料 | 掺杂元素及含量 | 比表面积/m2·g-1 | 电极体系 | 电流密度/A·g-1 | 比电容/F·g-1 | 循环次数 | 电容保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
N-CNS | N, 7.06%① | 1181 | 三电极 | 0.1 | 210 | 5000 | 91.2 | [ |
NFPC0.4-0.4Y-700 | N, 8.22%② | 1474 | 三电极 | 1 | 349 | 2000 | 92 | [ |
NPC | N, 4.48%② | 495.9 | 三电极 | 2 | 232.2 | 5000 | 89.8 | [ |
N, P-PGC | N, 5.34%① P, 2.7%① | 1606.6 | 两电极 | 0.5 | 219 | 10000 | 95.6 | [ |
PAC-4-600 | O, 15.9%① | 2245 | 三电极 | 0.5 | 427 | 10000 | 95 | [ |
PC-CTP | O, 3.13%② | 2087 | 三电极 | 0.5 | 318.1 | — | — | [ |
BNC-900 | B, 1.703%② | 1103 | 三电极 | 0.1 | 349 | — | — | [ |
HPC-4 | S, 1.03%② | 3318 | 三电极 | 1 | 327 | 5000 | 96.5 | [ |
表3 杂原子掺杂沥青基多孔炭结构及其在超级电容器中的性能
材料 | 掺杂元素及含量 | 比表面积/m2·g-1 | 电极体系 | 电流密度/A·g-1 | 比电容/F·g-1 | 循环次数 | 电容保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
N-CNS | N, 7.06%① | 1181 | 三电极 | 0.1 | 210 | 5000 | 91.2 | [ |
NFPC0.4-0.4Y-700 | N, 8.22%② | 1474 | 三电极 | 1 | 349 | 2000 | 92 | [ |
NPC | N, 4.48%② | 495.9 | 三电极 | 2 | 232.2 | 5000 | 89.8 | [ |
N, P-PGC | N, 5.34%① P, 2.7%① | 1606.6 | 两电极 | 0.5 | 219 | 10000 | 95.6 | [ |
PAC-4-600 | O, 15.9%① | 2245 | 三电极 | 0.5 | 427 | 10000 | 95 | [ |
PC-CTP | O, 3.13%② | 2087 | 三电极 | 0.5 | 318.1 | — | — | [ |
BNC-900 | B, 1.703%② | 1103 | 三电极 | 0.1 | 349 | — | — | [ |
HPC-4 | S, 1.03%② | 3318 | 三电极 | 1 | 327 | 5000 | 96.5 | [ |
材料 | 比表面积/m2·g-1 | 电解液及浓度 | 电极体系 | 电流密度/A·g-1 | 比电容/F·g-1 | 循环次数 | 电容保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
HPC/MnO2 | 2079 | 6mol/L KOH | 三电极 | 1 | 480 | 5000 | 79.1 | [ |
MnO2@PCN | 836 | 1mol/L Na2SO4 | 三电极 | 0.5 | 377 | 5000 | 88.3 | [ |
ACPPy-2 | 966 | 1mol/L Na2SO4 | 三电极 | 1 | 82.3 | 1000 | 82 | [ |
PPMn-CNF | 620 | 6mol/L KOH | 两电极 | 1① | 188 | — | — | [ |
MPC/G10-2-24 | 2164 | 6mol/L KOH | 三电极 | 0.05 | 278 | 10000 | 93 | [ |
PO-GO-16 | 2196 | 6mol/L KOH | 三电极 | 0.1 | 296 | — | — | [ |
表4 超级电容器用沥青基炭复合材料的性能参数
材料 | 比表面积/m2·g-1 | 电解液及浓度 | 电极体系 | 电流密度/A·g-1 | 比电容/F·g-1 | 循环次数 | 电容保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
HPC/MnO2 | 2079 | 6mol/L KOH | 三电极 | 1 | 480 | 5000 | 79.1 | [ |
MnO2@PCN | 836 | 1mol/L Na2SO4 | 三电极 | 0.5 | 377 | 5000 | 88.3 | [ |
ACPPy-2 | 966 | 1mol/L Na2SO4 | 三电极 | 1 | 82.3 | 1000 | 82 | [ |
PPMn-CNF | 620 | 6mol/L KOH | 两电极 | 1① | 188 | — | — | [ |
MPC/G10-2-24 | 2164 | 6mol/L KOH | 三电极 | 0.05 | 278 | 10000 | 93 | [ |
PO-GO-16 | 2196 | 6mol/L KOH | 三电极 | 0.1 | 296 | — | — | [ |
1 | 中国沥青行业市场需求预测与投资战略规划分析报告(2022—2027) [R]. 北京: 前瞻产业研究院, 2021. |
Report of market demand forecast and investment forecast strategic planning on china asphalt industry (2022—2027) [R]. Beijing: Professional Industry Quality Service, 2021. | |
2 | YAO Lei, WU Qin, ZHANG Peixin, et al. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density[J]. Advanced Materials, 2018, 30(11): 1706054. |
3 | GUAN Taotao, ZHAO Jianghong, ZHANG Guoli, et al. Template-free synthesis of honeycomblike porous carbon rich in specific 2—5nm mesopores from a pitch-based polymer for a high-performance supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2116-2126. |
4 | ZHANG Guoli, GUAN Taotao, QIAO Jinli, et al. Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors[J]. Energy Storage Materials, 2020, 26: 119-128. |
5 | ZHUANG Qiqi, CAO Jingpei, WU Yan, et al. Direct synthesis of oxygen-enriched 3D porous carbons via NaCl template derived from oxidized coal tar pitch for excellent cycling stability electric double layer capacitor[J]. Journal of Power Sources, 2021, 508: 230330. |
6 | KHAN Abrar, SENTHIL Raja Arumugam, PAN Junqing, et al. A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application[J]. Electrochimica Acta, 2020, 335: 135588. |
7 | HUANG Yu, WANG Baoqing, LIU Fu, et al. Fabrication of rambutan-like activated carbon sphere/carbon nanotubes and their application as supercapacitors[J]. Energy & Fuels, 2021, 35(9): 8313-8320. |
8 | DANG Chao, HUANG Zhongyuan, CHEN Yian, et al. Direct dissolution of cellulose in NaOH/urea/α-lipoic acid aqueous solution to fabricate all biomass-based nitrogen, sulfur dual-doped hierarchical porous carbon aerogels for supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21528-21538. |
9 | SU Hai, ZHANG Haitao, LIU Fangyan, et al. High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes[J]. Chemical Engineering Journal, 2017, 322: 73-81. |
10 | WANG Gongming, YANG Yi, HAN Dongdong, et al. Oxygen defective metal oxides for energy conversion and storage[J]. Nano Today, 2017, 13: 23-39. |
11 | NIU Shanshan, WANG Zhiyu, ZHOU Tao, et al. A polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity[J]. Advanced Functional Materials, 2017, 27(5): 1605332. |
12 | WANG Minghao, JI Bowen, GU Xiaowei, et al. Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application[J]. Biosensors and Bioelectronics, 2018, 99: 99-107. |
13 | JAYARAMULU Kolleboyina, DUBAL Deepak P, NAGAR Bhawna, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials, 2018, 30(15): e1705789. |
14 | AUGUSTYN Veronica, SIMON Patrice, DUNN Bruce. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. |
15 | SHAO Yuanlong, EL-KADY Maher F, SUN Jingyu, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280. |
16 | CONWAY B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[M]. New York: Springer, 1999. |
17 | LI Ying, ZHAO Yaxin, ZHANG Jinfang, et al. Hierarchical porous carbon fiber for fiber-shaped supercapacitor[J]. Functional Materials Letters, 2021, 14(4): 2150016. |
18 | YANG Xiaoxia, ZHAO Shuai, ZHANG Zhuangzhuang, et al. Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor[J]. Journal of Colloid and Interface Science, 2022, 614: 298-309. |
19 | WU Tingting, JIN Biyu, LI Hongqiang, et al. Foam-like porous carbons with ultrahigh surface area from petroleum pitch and their supercapacitive performance[J]. Chemical Physics Letters, 2021, 783: 139058. |
20 | SHAO Jinqiu, SONG Mingyuan, WU Guang, et al. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating[J]. Energy Storage Materials, 2018, 13: 57-65. |
21 | LIU Mingjie, WEI Feng, YANG Xuemei, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template[J]. New Carbon Materials, 2018, 33(4): 316-323. |
22 | FRACKOWIAK Elzbieta, François BÉGUIN. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950. |
23 | GUO Yan, SHI Zhiqiang, CHEN Mingming, et al. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors[J]. Journal of Power Sources, 2014, 252: 235-243. |
24 | GENG Weidan, MA Fangwei, WU Guang, et al. MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors[J]. Electrochimica Acta, 2016, 191: 854-863. |
25 | 胡晓. 超级电容器行业市场分析与技术现状研究[J]. 机电元件, 2009, 29(3): 17-26. |
HU Xiao. Market analysis and technology status research of ultracapacitor industry[J]. Electromechanical Components, 2009, 29(3): 17-26. | |
26 | ZHANG Guoli, GUAN Taotao, WANG Ning, et al. Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance[J]. Chemical Engineering Journal, 2020, 399: 125818. |
27 | MA Yuan, MA Chang, SHENG Jie, et al. Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors[J]. Journal of Colloid and Interface Science, 2016, 461: 96-103. |
28 | ELIAD Linoam, SALITRA Gregory, SOFFER Abraham, et al. Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions[J]. The Journal of Physical Chemistry B, 2001, 105(29): 6880-6887. |
29 | HUANG Jingsong, SUMPTER Bobby G, MEUNIER Vincent. Theoretical model for nanoporous carbon supercapacitors[J]. Angewandte Chemie International Edition, 2008, 47(3): 520-524. |
30 | YANG Yikai, ZUO Pingping, QU Shijie. Adjusting hydrophily and aromaticity strategy for pitch-based hierarchical porous carbon and its application in flexible supercapacitor[J]. Fuel, 2022, 311: 122514. |
31 | MORIMOTO T, HIRATSUKA K, SANADA Y, et al. Electric double-layer capacitor using organic electrolyte[J]. Journal of Power Sources, 1996, 60(2): 239-247. |
32 | CORBETT Luke W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization[J]. Analytical Chemistry, 1969, 41(4): 576-579. |
33 | LI Derek D, GREENFIELD Michael L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
34 | 何亮, 李冠男, 郑雨丰, 等. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093. |
HE Liang, LI Guannan, ZHENG Yufeng, et al. Research progress and prospect of molecular dynamics of asphalt systems[J]. Materials Reports, 2020, 34(19): 19083-19093. | |
35 | 高金森, 徐春明, KOTLYAR Luba S, 等. 油砂沥青中重组分的分子模拟[J]. 化工学报, 2003, 54(1): 9-17. |
GAO Jinsen, XU Chunming, KOTLYAR Luba S, et al. Molecular modelling of heavy components present in athabasca bitumen pitch[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 9-17. | |
36 | 北京太冶研究总院. 中国冶金百科全书[M]. 北京: 冶金工业出版社, 2001. |
Beijing Taiye Research Institute. Encyclopedia of Chinese Metallurgy[M]. Beijing: Metallurgical Industry Press, 2001. | |
37 | 梁天, 石军, 邹艳荣. 不可溶沥青的分子模型构建:以四川省西北部广元天然沥青为例[J]. 地球化学, 2020, 49(6): 683-689. |
LIANG Tian, SHI Jun, ZOU Yanrong. The chemical structure and the molecular model construction of insoluble bitumen: A case study of the Guangyuan bitumen, northwestern Sichuan Province[J]. Geochimica, 2020, 49(6): 683-689. | |
38 | LI Yunming, HU Yongsheng, LI Hong, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(1): 96-104. |
39 | 郭明聪, 刘书林, 和凤祥, 等. 煤沥青基三维多孔炭作为超级电容器电极材料的电化学性能[J]. 燃料化学学报, 2021, 49(11): 1648-1655. |
GUO Mingcong, LIU Shulin, HE Fengxiang, et al. Electrochemical properties of coal pitch-based three-dimensional porous carbon as electrode materials for supercapacitors[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1648-1655. | |
40 | 黄鲜安. CO2活化制备煤液化沥青基多孔炭及电容性能研究[D]. 大连: 大连理工大学, 2021. |
HUANG Xian’an. Preparation and capacitance performance of coal liquefied asphalt based porous carbon by CO2 activation[D]. Dalian: Dalian University of Technology, 2021. | |
41 | 张金亮, 康丹苗, 刘均庆, 等. 水溶性沥青基多孔炭的电性能[J]. 储能科学与技术, 2020, 9(3): 743-750. |
ZHANG Jinliang, KANG Danmiao, LIU Junqing, et al. Electrochemical performance of water soluble pitch-based porous carbons[J]. Energy Storage Science and Technology, 2020, 9(3): 743-750. | |
42 | WEI Feng, HE Xiaojun, MA Lianbo, et al. 3D N,O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 82. |
43 | ABUDU Patiman, WANG Luxiang, XU Mengjiao, et al. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors[J]. Chemical Physics Letters, 2018, 702: 1-7. |
44 | LIU Guanwen, CHEN Tsung-Yi, CHUNG Cheng-Han, et al. Hierarchical micro/mesoporous carbons synthesized with a ZnO template and petroleum pitch via a solvent-free process for a high-performance supercapacitor[J]. ACS Omega, 2017, 2(5): 2106-2113. |
45 | WEI Feng, ZHANG Hanfang, HE Xiaojun, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Malerials, 2019, 34(2): 132-139. |
46 | HE Xiaojun, YU Huanhuan, FAN Liangwei, et al. Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors[J]. Materials Letters, 2017, 195: 31-33. |
47 | QIN Bin, WANG Qun, ZHANG Xiaohua, et al. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors[J]. Electrochimica Acta, 2018, 283: 655-663. |
48 | PAN Lei, LI Xinxin, WANG Yixian, et al. 3D interconnected honeycomb-like and high rate performance porous carbons from petroleum asphalt for supercapacitors[J]. Applied Surface Science, 2018, 444: 739-746. |
49 | LIU Huichao, SONG Hua, HOU Wenjing, et al. Coal tar pitch-based hierarchical porous carbons prepared in molten salt for supercapacitors[J]. Materials Chemistry and Physics, 2021, 265: 124491. |
50 | WANG Donghua, WANG Yanzhong, CHEN You, et al. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochimica Acta, 2018, 283: 132-140. |
51 | LI Gang, SUN Zhonggui, ZHANG Yangyang, et al. One-step green synthesis of nitrogen and phosphorus co-doped pitch-based porous graphene-like carbon for supercapacitors[J]. Journal of Porous Materials, 2017, 24(6): 1689-1696. |
52 | PANJA Tandra, BHATTACHARJYA Dhrubajyoti, YU Jong-Sung. Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability[J]. Journal of Materials Chemistry A, 2015, 3(35): 18001-18009. |
53 | ZHANG Deyi, HAO Yuan, ZHENG Liwen, et al. Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance[J]. Journal of Materials Chemistry A, 2013, 1(26): 7584-7591. |
54 | LING Zheng, WANG Zhiyu, ZHANG Mengdi, et al. Sustainable synthesis: Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors [J]. Advanced Functional Materials, 2016, 26(1): 111-119. |
55 | LIU Fangfang, CHUAN Xiuyun, LI Bo, et al. One-step carbonization synthesis of in-situ nitrogen-doped carbon tubes using fibrous brucite as the template for supercapacitors[J]. Materials Chemistry and Physics, 2022, 281: 125811. |
56 | SUN Jinyi, LIU Zhanfei, RUJIRALAI Thitima, et al. Tungsten disulfide nanoparticles embedded in gelatin-derived honeycomb-like nitrogen-doped carbon networks with reinforced electrochemical pseudocapacitance performance[J]. Journal of Energy Storage, 2022, 46: 103916. |
57 | ABBAS Syed Comail, LIN Changmei, HUA Zifeng, et al. Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors[J]. Chemical Engineering Journal, 2022, 433: 133738. |
58 | HU Xin, WANG Yahui, DING Bing, et al. A novel way to synthesize nitrogen doped porous carbon materials with high rate performance and energy density for supercapacitors[J]. Journal of Alloys and Compounds, 2019, 785: 110-116. |
59 | THONGSAI Nichaphat, HRIMCHUM Kittipong, AUSSAWASATHIEN Darunee. Carbon fiber mat from palm-kernel-shell lignin/polyacrylonitrile as intrinsic-doping electrode in supercapacitor[J]. Sustainable Materials and Technologies, 2021, 30: e00341. |
60 | SALEH GHADIMI Laleh, ARSALANI Nasser, TABRIZI Amin Goljanian, et al. Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor[J]. Electrochimica Acta, 2018, 282: 116-127. |
61 | LIANG Ying, LU Yunhua, XIAO Guoyong, et al. Hierarchical porous nitrogen-doped carbon microspheres after thermal rearrangement as high performance electrode materials for supercapacitors[J]. Applied Surface Science, 2020, 529: 147141. |
62 | SYLLA Ndeye F, NDIAYE Ndeye M, NGOM Balla D, et al. Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor[J]. Journal of Colloid and Interface Science, 2020, 569: 332-345. |
63 | CHEN Tingting, LUO Lu, LUO Lingcong, et al. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste[J]. Renewable Energy, 2021, 175: 760-769. |
64 | ZHANG Hui, LING Yang, PENG Yan, et al. Nitrogen-doped porous carbon materials derived from ionic liquids as electrode for supercapacitor[J]. Inorganic Chemistry Communications, 2020, 115: 107856. |
65 | SHAO Jinqiu, MA Fangwei, WU Guang, et al. Facile preparation of 3D nanostructured O/N co-doped porous carbon constructed by interconnected carbon nanosheets for excellent-performance supercapacitors[J]. Electrochimica Acta, 2016, 222: 793-805. |
66 | LIU Mengxuan, LI Wei, RUAN Siying, et al. N-doped hierarchical mesoporous carbon from mesophase pitch and polypyrrole for supercapacitors[J]. Energy & Fuels, 2020, 34(4): 5044-5051. |
67 | WANG Xuewan, SUN Gengzhi, ROUTH Parimal, et al. Heteroatom-doped graphene materials: Syntheses, properties and applications[J]. Chemical Society Reviews, 2014, 43(20): 7067-7098. |
68 | ZHANG Dongdong, HE Chong, WANG Yuzi, et al. Oxygen-rich hierarchically porous carbons derived from pitch-based oxidized spheres for boosting the supercapacitive performance[J]. Journal of Colloid and Interface Science, 2019, 540: 439-447. |
69 | KIM Seong Ho, KIM Bo-Hye. Influence of boron content on the structure and capacitive properties of electrospun polyacrylonitrile/pitch-based carbon nanofiber composites[J]. Synthetic Metals, 2018, 242: 1-7. |
70 | 周颖, 王道龙, 肖南, 等. 热处理温度对沥青基硼氮共掺杂多孔炭结构与电化学性能的影响[J]. 物理化学学报, 2014, 30(6): 1127-1133. |
ZHOU Ying, WANG Daolong, XIAO Nan, et al. Influence of heat treatment temperature on the structure and electrochemical performance of asphaltene-based B/N co-doped porous carbons[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1127-1133. | |
71 | GU Wentian, SEVILLA Marta, MAGASINSKI Alexandre, et al. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6(8): 2465-2476. |
72 | CAI Wanli, LI Kai, JIANG Kun, et al. Utilization of high‑sulfur-containing petroleum coke for making sulfur-doped porous carbon composite material and its application in supercapacitors[J]. Diamond and Related Materials, 2021, 116: 108380. |
73 | YANG Yikai, NIU Hao, QIN Fangfang, et al. MnO2 doped carbon nanosheets prepared from coal tar pitch for advanced asymmetric supercapacitor[J]. Electrochimica Acta, 2020, 354: 136667. |
74 | LEE Ji Won, LEE Hyo In, PARK Soo Jin. Facile synthesis of petroleum-based activated carbons/tubular polypyrrole composites with enhanced electrochemical performance as supercapacitor electrode materials[J]. Electrochimica Acta, 2018, 263: 447-453. |
75 | 庄奇琪, 曹景沛, 吴燕, 等. α-Fe2O3模板制备三维煤沥青基多孔炭用于高性能电容器[J]. 燃料化学学报, 2022, 50(4): 408-417. |
ZHUANG Qiqi, CAO Jingpei, WU Yan, et al. Preparation of three-dimensional coal tar pitch based porous carbon by α-Fe2O3 template for high performance supercapacitor[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 408-417. | |
76 | OUYANG Yinhui, XING Ting, CHEN Yulian, et al. Hierarchically structured spherical nickel cobalt layered double hydroxides particles grown on biomass porous carbon as an advanced electrode for high specific energy asymmetric supercapacitor[J]. Journal of Energy Storage, 2020, 30: 101454. |
77 | YANG Cheol-Min, KIM Bo-Hye. Highly conductive pitch-based carbon nanofiber/MnO2 composites for high-capacitance supercapacitors[J]. Journal of Alloys and Compounds, 2018, 749: 441-447. |
78 | HE Xiaojun, WANG Jingxian, XU Guohui, et al. Synthesis of microporous carbon/graphene composites for high-performance supercapacitors[J]. Diamond and Related Materials, 2016, 66: 119-125. |
[1] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[2] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[3] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[4] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[5] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[6] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[7] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
[8] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[9] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[10] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[11] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[12] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[13] | 赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813. |
[14] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[15] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |