1 |
CHI N T L, ANTO S, AHAMED T S, et al. A review on biochar production techniques and biochar based catalyst for biofuel production from algae[J]. Fuel, 2021, 287: 119411.
|
2 |
SENTHIL C, LEE C W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110464.
|
3 |
MENG L Y, PARK S J. Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon[J]. Journal of Colloid and Interface Science, 2012, 366(1): 125-129.
|
4 |
PANDEY Deepshikha, DAVEREY Achlesh, ARUNACHALAM Kusum. Biochar: Production, properties and emerging role as a support for enzyme immobilization[J]. Journal of Cleaner Production, 2020, 255: 120267.
|
5 |
BOLAN N, HOANG S A, BEIYUAN J, et al. Multifunctional applications of biochar beyond carbon storage[J]. International Materials Reviews, 2022, 67(2): 150-200.
|
6 |
HU Han, WU Mingbo. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A, 2020, 8(15): 7066-7082.
|
7 |
LI Jiangtong, XIAO Rui, LI Ming, et al. Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes[J]. Fuel Processing Technology, 2019, 192: 239-249.
|
8 |
GENG Weidan, MA Fangwei, WU Guang, et al. MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors[J]. Electrochimica Acta, 2016, 191: 854-863.
|
9 |
YUAN Gang, GUAN Kaixiu, HU Hang, et al. Calcium-chloride-assisted approach towards green and sustainable synthesis of hierarchical porous carbon microspheres for high-performance supercapacitive energy storage[J]. Journal of Colloid and Interface Science, 2021, 582: 159-166.
|
10 |
WEI Jishi, WAN Suige, ZHANG Peng, et al. Preparation of porous carbon electrodes from semen cassiae for high-performance electric double-layer capacitors[J]. New Journal of Chemistry, 2018, 42(9): 6763-6769.
|
11 |
XU Zhihua, ZHANG Daofang, YUAN Zhihang, et al. Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method[J]. Environmental Science and Pollution Research, 2017, 24(28): 22602-22612.
|
12 |
袁志航. 氧化镁模板法制备涤纶纺织废料基活性炭及其吸附水中六价铬实验研究[D]. 上海: 上海理工大学, 2018.
|
|
YUAN Zhihang. Waste polyester textiles-based activated carbons prepared by templated method of MgO and their adsorption of Cr(VI)[D]. Shanghai: University of Shanghai for Science & Technology, 2018.
|
13 |
NOKED M, AVRAHAM E, SOFTER A. The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination[J]. The Journal of Physical Chemistry C, 2009, 113(51): 21319-21327.
|
14 |
陈萌萌. 钼基材料催化转化木质素制备高附加值化学品的研究[D]. 天津: 天津大学, 2017.
|
|
CHEN Mengmeng. Catalytic transformation of lignin for value-added chemicals using molybdenum-based materials[D]. Tianjin: Tianjin University, 2017.
|
15 |
ZHANG Guoli, GUAN Taotao, CHENG Miao, et al. Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors[J]. Journal of Power Sources, 2020, 448: 227446.
|
16 |
张儒鹏. 硫化锌的制备及电化学性能的研究[D]. 北京: 北京化工大学, 2018.
|
|
ZHANG Rupeng. The preparation of zinc sulfide and its application in the sodium ion batteries[D]. Beijing: Beijing University of Chemical Technology, 2018.
|
17 |
MOHAN Gowtham, VENKATARAMAN Mahesh, Judith GOMEZ-VIDAL, et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage[J]. Energy Conversion and Management, 2018, 167: 156-164.
|
18 |
LI Jiaming, JIANG Qimeng, WEI Lansheng, et al. Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density[J]. Journal of Materials Chemistry A, 2020, 8(3): 1469-1479.
|
19 |
LIU Xiaoguang, WEN Yanliang, CHEN Xuecheng, et al. One-step synergistic effect to produce two-dimensional N-doped hierarchical porous carbon nanosheets for high-performance flexible supercapacitors[J]. ACS Applied Energy Materials, 2020, 3(9): 8562-8572.
|
20 |
王强. 含氮多孔炭材料的制备及电容性能研究[D]. 湘潭: 湘潭大学, 2013.
|
|
WANG Qiang. Preparation and capacitive performance research of nitrogen-containing porous carbon[D]. Xiangtan: Xiangtan University, 2013.
|
21 |
郭婧. 超级电容器电极材料—氧化锰纳米材料的合成及其电化学行为研究[D]. 兰州: 西北师范大学, 2017.
|
|
GUO Jing. Synthesis and electrochemical performances of manganese oxide nanomaterials for supercapacitor[D]. Lanzhou: Northwest Normal University, 2017.
|
22 |
王芳平, 马婧, 李小亚, 等. 板栗壳生物炭高性能对称性超级电容器电极材料的制备及性能[J]. 化工进展, 2021,40(8): 4381-4387.
|
|
WANG Fangping, MA Jing, LI Xiaoya, et al. Preparation and properties of chestnut shell-based biochar electrode material for high-performance symmetrical supercapacitor[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4381-4387.
|
23 |
KHALAFALLAH Diab, QUAN Xinyao, OUYANG Chong, et al. Heteroatoms doped porous carbon derived from waste potato peel for supercapacitors[J]. Renewable Energy, 2021, 170: 60-71.
|
24 |
AKDEMIR M, KARAKAŞ D E, KAYA M. Synthesis of a dual-functionalized carbon-based material as catalyst and supercapacitor for efficient hydrogen production and energy storage: Pd-supported pomegranate peel[J]. Energy Storage, 2022, 4(1): 1699-1707.
|
25 |
INAL I I G, AKDEMIR M, KAYA M. Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material[J]. International Journal of Hydrogen Energy, 2021, 46(41): 21534-21541.
|
26 |
HAO Shuhua, XING Yupeng, ZHAO Gang, et al. Non-conductive ion extraction molds biomass into dual cross-linked structures with defect as both commercial conductor and electrode active material[J]. Journal of Energy Storage, 2022, 52: 105043.
|