化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1578-1593.DOI: 10.16085/j.issn.1000-6613.2021-2221
胡庭瑗1(), 李平凡1, 汪伟1,2(), 刘壮1,2, 巨晓洁1,2, 谢锐1,2, 褚良银1,2
收稿日期:
2021-11-01
修回日期:
2022-01-04
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
汪伟
作者简介:
胡庭瑗(1998—),女,博士研究生,研究方向为新型功能材料。E-mail:基金资助:
HU Tingyuan1(), LI Pingfan1, WANG Wei1,2(), LIU Zhuang1,2, JU Xiaojie1,2, XIE Rui1,2, CHU Liangyin1,2
Received:
2021-11-01
Revised:
2022-01-04
Online:
2022-03-23
Published:
2022-03-28
Contact:
WANG Wei
摘要:
功能水凝胶作为一种三维高分子网络结构的软湿材料,具有可灵活调控的功能特性,为设计和构建高性能柔性超级电容器提供了理想的材料。本文综述了近年来面向柔性超级电容器领域的功能水凝胶材料的研究进展,重点分类介绍了面向电化学双层电容器和赝电容器的功能水凝胶材料的设计构建和性能强化。探讨了通过水凝胶电解质及电极材料的组成结构设计和性能调控来提升超级电容器的电化学性能和力学性能的策略。同时,探讨了水凝胶电解质及电极材料的组成结构设计和性能调控在实现其自愈合、高耐寒等多样化功能特性方面的重要作用。最后,对功能水凝胶材料柔性超级电容器在高储能、高柔性、高保水、自愈合、高耐寒、绿色可降解等方面的未来发展进行了展望。
中图分类号:
胡庭瑗, 李平凡, 汪伟, 刘壮, 巨晓洁, 谢锐, 褚良银. 面向柔性超级电容器的功能水凝胶材料的研究进展[J]. 化工进展, 2022, 41(3): 1578-1593.
HU Tingyuan, LI Pingfan, WANG Wei, LIU Zhuang, JU Xiaojie, XIE Rui, CHU Liangyin. Research pogress of functional hydrogel materials for soft supercapacitors[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1578-1593.
1 | ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541. |
2 | MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652. |
3 | LIBICH J, MÁCA J, VONDRÁK J, et al. Supercapacitors: properties and applications[J]. Journal of Energy Storage, 2018, 17: 224-227. |
4 | WU Y X, LI Y, WANG Y, et al. Advances and prospects of PVDF based polymer electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84. |
5 | QIU B, LIN B C, YAN F. Ionic liquid/poly(ionic liquid)-based electrolytes for energy devices[J]. Polymer International, 2013, 62(3): 335-337. |
6 | GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
7 | SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. |
8 | ZHANG W, FENG P, CHEN J, et al. Electrically conductive hydrogels for flexible energy storage systems[J]. Progress in Polymer Science, 2019, 88: 220-240. |
9 | SHANG J, SHAO Z, CHEN X. Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel[J]. Biomacromolecules, 2008, 9(4): 1208-1213. |
10 | KIM S J, YOON S G, LEE Y M, et al. Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)-hyaluronic acid in solution[J]. Biosensors and Bioelectronics, 2004, 19(6): 531-536. |
11 | KIM S J, SHIN S R, LEE J H, et al. Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions[J]. Journal of Applied Polymer Science, 2003, 90(1): 91-96. |
12 | QIU F, HUANG Y, HE G G, et al. A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability[J]. Electrochimica Acta, 2020, 363: 137241. |
13 | ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): 500. |
14 | GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158. |
15 | SUN J Y, ZHAO X H, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136. |
16 | AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
17 | XU Y, LIN Z, HUANG X, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano, 2013, 7(5): 4042-4049. |
18 | CHAN C Y, WANG Z Q, JIA H, et al. Recent advances of hydrogel electrolytes in flexible energy storage devices[J]. Journal of Materials Chemistry A, 2021, 9(4): 2043-2069. |
19 | DONG L B, YANG W, YANG W, et al. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2019, 7(23): 13810-13832. |
20 | KÖTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16): 2483-2498. |
21 | ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
22 | WU D D, JI C C, MI H Y, et al. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors[J]. Nanoscale, 2021, 13(37): 15869-15881. |
23 | NA R Q, LIU Y D, LU N, et al. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors[J]. Chemical Engineering Journal, 2019, 374: 738-747. |
24 | YANG C, LIU Z, CHEN C, et al. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15758-15767. |
25 | WEI J J, WEI G M, SHANG Y H, et al. Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte[J]. Advanced Materials, 2019, 31(30): 1900248. |
26 | FANG L, CAI Z, DING Z, et al. Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21895-21903. |
27 | DING Q Q, XU X W, YUE Y Y, et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27987-28002. |
28 | QIN G, WANG M X, FAN L D, et al. Multifunctional supramolecular gel polymer electrolyte for self-healable and cold-resistant supercapacitor[J]. Journal of Power Sources, 2020, 474: 228602. |
29 | HUANG Y, LIU J, WANG J Q, et al. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte[J]. Angewandte Chemie International Edition, 2018, 57(31): 9810-9813. |
30 | HINA M, BASHIR S, KAMRAN K, et al. Fabrication of aqueous solid-state symmetric supercapacitors based on self-healable poly (acrylamide)/PEDOT: PSS composite hydrogel electrolytes[J]. Materials Chemistry and Physics, 2021, 273: 125125. |
31 | DENG Z X, GUO Y, ZHAO X, et al. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions[J]. Chemistry of Materials, 2018, 30(5): 1729-1742. |
32 | LIU J, TAN C S Y, YU Z Y, et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing[J]. Advanced Materials, 2017, 29(22): 1605325. |
33 | GEISLER I M, SCHNEIDER J P. Evolution-based design of an injectable hydrogel[J]. Advanced Functional Materials, 2012, 22(3): 529-537. |
34 | APPEL E A, TIBBITT M W, WEBBER M J, et al. Self-assembled hydrogels utilizing polymer-nanoparticle interactions[J]. Nature Communications, 2015, 6: 6295. |
35 | TAO F, QIN L M, WANG Z K, et al. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15541-15548. |
36 | TSAREVSKY N V, MATYJASZEWSKI K. Reversible redox cleavage/coupling of polystyrene with disulfide or thiol groups prepared by atom transfer radical polymerization[J]. Macromolecules, 2002, 35(24): 9009-9014. |
37 | WEI Z, YANG J H, LIU Z Q, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015, 25(9): 1352-1359. |
38 | DAI L X, ZHANG W, SUN L, et al. Highly stretchable and compressible self-healing P(AA-co-AAm)/CoCl2 hydrogel electrolyte for flexible supercapacitors[J]. ChemElectroChem, 2019, 6(2): 467-472. |
39 | HOLTEN-ANDERSEN N, HARRINGTON M J, BIRKEDAL H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2651-2655. |
40 | WEI Z, YANG J H, DU X J, et al. Dextran-based self-healing hydrogels formed by reversible Diels-alder reaction under physiological conditions[J]. Macromolecular Rapid Communications, 2013, 34(18): 1464-1470. |
41 | LIU S L, KANG M M, LI K W, et al. Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels[J]. Chemical Engineering Journal, 2018, 334: 2222-2230. |
42 | EHSANI A, HEIDARI A A, SHIRI H M. Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: an introduction and review to it in recent studies[J]. The Chemical Record, 2019, 19(5): 908-926. |
43 | KUMAR S, SAEED G, ZHU L, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review[J]. Chemical Engineering Journal, 2021, 403: 126352. |
44 | ZHANG Y, SHI Z J, LIU L, et al. High conductive architecture: bimetal oxide with metallic properties @ bimetal hydroxide for high-performance pseudocapacitor[J]. Electrochimica Acta, 2017, 231: 487-494. |
45 | PATIL D S, PAWAR S A, SHIN J C, et al. Layered double hydroxide based on ZnCo@NiCo- nano-architecture on 3D graphene scaffold as an efficient pseudocapacitor[J]. Journal of Power Sources, 2019, 435: 226812. |
46 | CHEN R, YU M, SAHU R P, et al. The development of pseudocapacitor electrodes and devices with high active mass loading[J]. Advanced Energy Materials, 2020, 10(20): 1903848. |
47 | ZHOU K, ZHOU W J, YANG L J, et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach[J]. Advanced Functional Materials, 2015, 25(48): 7530-7538. |
48 | XI Y N, DONG B H, DONG Y N, et al. Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance[J]. Chemistry of Materials, 2016, 28(5): 1355-1362. |
49 | GONZÁLEZ F J, MONTESINOS A, ARAUJO-MORERA J, et al. ‘In-situ’ preparation of carbonaceous conductive composite materials based on PEDOT and biowaste for flexible pseudocapacitor application[J]. Journal of Composites Science, 2020, 4(3): 87. |
50 | LIU T, FINN L, YU M H, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Letters, 2014, 14(5): 2522-2527. |
51 | WANG H L, CASALONGUE H S, LIANG Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society, 2010, 132(21): 7472-7477. |
52 | ZHAO X, WANG S J, WU Q. Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance[J]. Electrochimica Acta, 2017, 247: 1140-1146. |
53 | JIN Q Z, LI W, WANG K L, et al. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage[J]. Advanced Functional Materials, 2020, 30(14): 1909907. |
54 | YI C Q, ZOU J P, YANG H Z, et al. Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 1980-2001. |
55 | TOUPIN M, BROUSSE T, BÉLANGER D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials, 2004, 16(16): 3184-3190. |
56 | WANG Y Q, DING Y, GUO X L, et al. Conductive polymers for stretchable supercapacitors[J]. Nano Research, 2019, 12(9): 1978-1987. |
57 | LI H L, WANG J X, CHU Q X, et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. Journal of Power Sources, 2009, 190(2): 578-586. |
58 | MUZAFFAR A, AHAMED M B, DESHMUKH K, et al. A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 123-145. |
59 | LU Q, CHEN J G, XIAO J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edition, 2013, 52(7): 1882-1889. |
60 | WANG C, ZHU J W, LIANG S M, et al. Reduced graphene oxide decorated with CuO-ZnO hetero-junctions: towards high selective gas-sensing property to acetone[J]. Journal of Materials Chemistry A, 2014, 2(43): 18635-18643. |
61 | MENG X Q, DENG J, ZHU J W, et al. Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors[J]. Scientific Reports, 2016, 6: 21717. |
62 | DU X X, LUO F B, GUO Y Y, et al. Fabrication of graphene/single wall carbon nanotubes/polyaniline composite gels as binder-free electrode materials[J]. Journal of Applied Polymer Science, 2019, 136(3): 46948. |
63 | YANG J Q, ZHOU X L, WU D H, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29(6): 1604108. |
64 | JIA Q, YANG C, PAN Q Q, et al. High-voltage aqueous asymmetric pseudocapacitors based on methyl blue-doped polyaniline hydrogels and the derived N/S-codoped carbon aerogels[J]. Chemical Engineering Journal, 2020, 383: 123153. |
65 | KANG Y B, WANG B, YAN Y P, et al. Three-dimensionally macroporous nitrogen and boron co-doped graphene aerogels derived from polyaspartamide for supercapacitor electrodes[J]. Materials Today Communications, 2020, 25: 101495. |
66 | ZHANG X S, PEI Z X, WANG C J, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small, 2019, 15(47): 1903817. |
67 | SHANG Y H, WEI J J, WU C, et al. Extreme temperature-tolerant organohydrogel electrolytes for laminated assembly of biaxially stretchable pseudocapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42959-42966. |
68 | YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device[J]. ACS Nano, 2019, 13(3): 3141-3150. |
69 | ZOU Y L, CHEN C, SUN Y J, et al. Flexible, all-hydrogel supercapacitor with self-healing ability[J]. Chemical Engineering Journal, 2021, 418: 128616. |
70 | MO F N, LI Q, LIANG G J, et al. A self-healing crease-free supramolecular all-polymer supercapacitor[J]. Advanced Science, 2021, 8(12): 2100072. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[6] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[7] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[8] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[9] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[10] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[11] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[12] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
[13] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[14] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
[15] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |