化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4855-4865.DOI: 10.16085/j.issn.1000-6613.2021-2248
龙垠荧1(), 杨健1, 管敏1, 杨怡洛1, 程正柏2, 曹海兵2, 刘洪斌1(
), 安兴业1(
)
收稿日期:
2021-11-02
修回日期:
2022-02-01
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
刘洪斌,安兴业
作者简介:
龙垠荧(1997—),女,硕士研究生,研究方向为先进纤维与纸基功能材料。E-mail:13508553494@163.com。
基金资助:
LONG Yinying1(), YANG Jian1, GUAN Min1, YANG Yiluo1, CHENG Zhengbai2, CAO Haibing2, LIU Hongbin1(
), AN Xingye1(
)
Received:
2021-11-02
Revised:
2022-02-01
Online:
2022-09-25
Published:
2022-09-27
Contact:
LIU Hongbin, AN Xingye
摘要:
木质素是一种多酚聚合物,具有丰富的芳香类官能团和含氧官能团,且在碳化后形成的多孔碳材料易于转化为石墨化碳层,从而形成局部高导电区域,是制备超级电容器的优质前体,故将木质素用于混合型超级电容器逐渐成为研究热点之一。本文综述了近年来木质素碳材料在混合型超级电容器电极材料中的应用,重点分析了木质素在其中的作用,将其总结为3类进行介绍,包括木质素/多孔炭(石墨烯、碳纳米管)型、木质素/金属化合物(金属氧化物、硫化物、氢氧化物)型和木质素/导电聚合物(聚苯胺、聚吡咯、聚噻吩)型。此外,还介绍了木质素基混合型超级电容器在柔性超级电容器中的应用。最后,总结了木质素基材料应用在混合超级电容器中的优势和挑战。
中图分类号:
龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865.
LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865.
1 | GUO Tiezhu, ZHOU Di, LIU Wenfeng, et al. Recent advances in all-in-one flexible supercapacitors[J]. Science China Materials, 2021, 64(1): 27-45. |
2 | KUMAR S, SAEED G, ZHU Ling, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review[J]. Chemical Engineering Journal, 2021, 403: 126352. |
3 | 陈娟, 范利丹, 胡潇依, 等. 固态柔性超级电容器构筑及其材料的研究进展[J]. 化工进展, 2019, 38(10): 4623-4631. |
CHEN Juan, FAN Lidan, HU Xiaoyi, et al. Research progress of construction and materials of solid-state flexible supercapacitors[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4623-4631. | |
4 | XIE Qinxing, BAO Rongrong, XIE Chao, et al. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density[J]. Journal of Power Sources, 2016, 317: 133-142. |
5 | WANG J, RAN R, SUNARSO J, et al. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels[J]. Journal of Power Sources, 2017, 347: 259-269. |
6 | LUO Yongfeng, LI Xi, ZHANG Jianxiong, et al. The carbon nanotube fibers for optoelectric conversion and energy storage[J]. Journal of Nanomaterials, 2014, 2014: 580256. |
7 | AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. |
8 | CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5(1): 5-19. |
9 | 卿乐英. 基于结构热力学的电容器能量密度与功率密度微观机理研究[D]. 上海: 华东理工大学, 2021. |
QING Leying. Micromechanisms on the energy density and power density of capacitors by structured thermodynamics[D]. Shanghai: East China University of Science and Technology, 2021. | |
10 | SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280. |
11 | KAVERLAVANI S K, MOOSAVIFARD S E, BAKOUEI A. Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(27): 14301-14309. |
12 | HARILAL M, VIDYADHARAN B, MISNON I I, et al. One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10730-10742. |
13 | MOHD ABDAH M A A, AZMAN N H N, KULANDAIVALU S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Materials & Design, 2020, 186: 108199. |
14 | OUYANG Yu, ZHANG Bin, WANG Chengxin, et al. Bimetallic metal-organic framework derived porous NiCo2S4 nanosheets arrays as binder-free electrode for hybrid supercapacitor[J]. Applied Surface Science, 2021, 542: 148621. |
15 | ŁUKAWSKI D, GRZEŚKOWIAK W, LEKAWA-RAUS A, et al. Flame retardant effect of lignin/carbon nanotubes/potassium carbonate composite coatings on cotton roving[J]. Cellulose, 2020, 27(12): 7271-7281. |
16 | JAYARAMULU K, HORN M, SCHNEEMANN A, et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors[J]. Advanced Materials, 2021, 33(4): 2004560. |
17 | AJJAN F N, CASADO N, RĘBIŚ T, et al. High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(5): 1838-1847. |
18 | SUN Q N, KHUNSUPAT R, AKATO K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors[J]. Green Chemistry, 2016, 18(18): 5015-5024. |
19 | GRAICHEN F H M, GRIGSBY W J, HILL S J, et al. Yes, we can make money out of lignin and other bio-based resources[J]. Industrial Crops and Products, 2017, 106: 74-85. |
20 | FANG Wei, YANG Sheng, WANG Xiluan, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)[J]. Green Chemistry, 2017, 19(8): 1794-1827. |
21 | 徐慧民, 李莉娟, 欧阳新华, 等. 木质素基超级电容器电极材料研究进展[J]. 中国造纸学报, 2021, 36(1): 80-87. |
XU Huimin, LI Lijuan, OUYANG Xinhua, et al. Research advance in lignin-based supercapacitor materials[J]. Transactions of China Pulp and Paper, 2021, 36(1): 80-87. | |
22 | LIAN Qingwang, ZHOU Gang, LIU Jiatu, et al. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling[J]. Journal of Power Sources, 2017, 366: 1-8. |
23 | JEON J W, ZHANG L B, LUTKENHAUS J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432. |
24 | 呼延永江, 高帆. 石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J]. 中国造纸学报, 2020, 35(1): 33-38. |
HUYAN Yongjiang, GAO Fan. Effect of graphene doping on the electrochemical properties of lignin-based carbon nanofibers[J]. Transactions of China Pulp and Paper, 2020, 35(1): 33-38. | |
25 | JIANG Can, WANG Zuhao, LI Jiaxiong, et al. RGO-templated lignin-derived porous carbon materials for renewable high-performance supercapacitors[J]. Electrochimica Acta, 2020, 353: 136482. |
26 | WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931. |
27 | 彭志远. 全生物质基柔性超级电容器的研究[D]. 长沙: 湖南大学, 2018. |
PENG Zhiyuan. The study of all biomass-based flexible supercapcitors[D]. Changsha: Hunan University, 2018. | |
28 | 冯鑫佳. π-π作用和疏水效应对碱木质素聚集行为的影响[D]. 广州: 华南理工大学, 2012. |
FENG Xinjia. Inlfuence of π-π interaction and hydrophobic effect on the aggregation behavior of alkali lignin[D]. Guangzhou: South China University of Technology, 2012. | |
29 | CHEN Feng, ZHOU Wenjing, YAO Hongfei, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry, 2013, 15(11): 3057-3063. |
30 | ZHOU Zeping, CHEN Feng, KUANG Tairong, et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J]. Electrochimica Acta, 2018, 274: 288-297. |
31 | YU B M, GELE A R, WANG L P. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors[J]. International Journal of Biological Macromolecules, 2018, 118(Pt A): 478-484. |
32 | RANJITH K S, RAJU G S R, CHODANKAR N R, et al. Lignin-derived carbon nanofibers-laminated redox-active-mixed metal sulfides for high-energy rechargeable hybrid supercapacitors[J]. International Journal of Energy Research, 2021, 45(5): 8018-8029. |
33 | XIA Xinhui, TU Jiangping, ZHANG Yongqi, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J]. ACS Nano, 2012, 6(6): 5531-5538. |
34 | JI Xiaoqin, SUN Delin, ZOU Weihua, et al. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials[J]. Journal of Alloys and Compounds, 2021, 876: 160112. |
35 | SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12. |
36 | WANG Li, LI Xingwei, XU Hailing, et al. Construction of polyaniline/lignin composite with interpenetrating fibrous networks and its improved electrochemical capacitance performances[J]. Synthetic Metals, 2019, 249: 40-46. |
37 | DIXON R, D’SOUZA N, CHEN F, et al. Methods for producing carbon fibers from poly-(caffeyl alcohol): US9890480[P]. 2018-02-13. |
38 | Tian LYU, LIU Mingxian, ZHU Dazhang, et al. Nanocarbon-based materials for flexible all-solid-state supercapacitors[J]. Advanced Materials, 2018, 30(17): e1705489. |
39 | DAI Zhong, REN Penggang, JIN Yanling, et al. Nitrogen-sulphur co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437: 226937. |
40 | MAHMOOD F, ZHANG Hanwen, LIN Jian, et al. Laser-induced graphene derived from kraft lignin for flexible supercapacitors[J]. ACS Omega, 2020, 5(24): 14611-14618. |
41 | JHA S, MEHTA S, CHEN Yan, et al. NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3418-3430. |
42 | MEHTA S, JHA S, HUANG Dali, et al. Microwave synthesis of MnO2-lignin composite electrodes for supercapacitors[J]. Journal of Composites Science, 2021, 5(8): 216. |
43 | NAVARRO S A M, NEREA C, JAVIER C G, et al. Full-cell quinone/hydroquinone supercapacitors based on partially reduced graphite oxide and lignin/PEDOT electrodes[J]. Journal of Materials Chemistry A, 2017, 5(15): 7137-7143. |
44 | WANG Keliang, XU Ming, GU Yan, et al. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes[J]. Journal of Power Sources, 2016, 332: 180-186. |
45 | CAO Qiping, ZHU Mengni, CHEN Jia'ai, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221. |
46 | PENG Zhiyuan, ZOU Yubo, XU Shiqi, et al. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22190-22200. |
47 | SHEN H, GELE A R. Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes[J]. Inorganic Chemistry Communications, 2021, 128: 108607. |
48 | AJJAN F N, VAGIN M, RĘBIŚ T, et al. Scalable asymmetric supercapacitors based on hybrid organic/biopolymer electrodes[J]. Advanced Sustainable Systems, 2017, 1(8): 1700054. |
49 | LEI D Y, LI X D, SEO M K, et al. NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors[J]. Polymer, 2017, 132: 31-40. |
50 | TANGUY N R, WU H R, NAIR S S, et al. Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes[J]. ChemSusChem, 2021, 14(4): 1057-1067. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[3] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[4] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[5] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[6] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[7] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[8] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[9] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[10] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[11] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[12] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[13] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
[14] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[15] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 180
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 394
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |