化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4840-4854.DOI: 10.16085/j.issn.1000-6613.2021-2469
收稿日期:
2021-12-02
修回日期:
2022-02-25
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
王志国
作者简介:
黄岳峰(1997—),女,硕士研究生,研究方向为木质纤维素材料。E-mail:971867065@qq.com。
基金资助:
HUANG Yuefeng(), MA Lisha, ZHANG Lili, WANG Zhiguo()
Received:
2021-12-02
Revised:
2022-02-25
Online:
2022-09-25
Published:
2022-09-27
Contact:
WANG Zhiguo
摘要:
为了解决传统石油基高分子薄膜不可降解等问题,纤维素、淀粉、壳聚糖等生物质薄膜材料因其具有绿色可降解性等优点而备受关注并展现出良好的发展前景。但生物质薄膜往往存在强度低、耐水性差等问题,限制了其进一步发展及功能化应用。本文综述了以木质纤维素作为添加剂增强生物质薄膜的力学强度、防水性、紫外屏蔽等性能的研究进展,重点探讨了不同结构性质的木质素和不同尺度的微纳米木质纤维素对生物质薄膜性能的影响,并进一步综述了木质纤维素复合生物质薄膜材料在包装材料、电极材料以及催化材料领域中的功能化应用研究进展。分析并展望了木质纤维素复合生物质薄膜在制备及功能化方面的优势、不足以及发展方向,以期为采用木质纤维素改良生物质薄膜的研究提供借鉴。
中图分类号:
黄岳峰, 马丽莎, 张莉莉, 王志国. 木质纤维素复合生物质薄膜材料的功能化应用研究进展[J]. 化工进展, 2022, 41(9): 4840-4854.
HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854.
1 | 高成涛, 蔡龙, 董福平, 等. 纤维素基分离膜材料的应用研究进展[J]. 高校化学工程学报, 2019, 33(5): 1037-1047. |
GAO Chengtao, CAI Long, DONG Fuping, et al. Review on cellulose-based membrane materials[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(5): 1037-1047. | |
2 | 陈思佳, 马德韬, 李静, 等. 纳米材料在薄膜中的改性应用[J]. 胶体与聚合物, 2019, 37(2): 91-94. |
CHEN Sijia, MA Detao, LI Jing, et al. Modified application of nanomaterials in thin films[J]. Chinese Journal of Colloid & Polymer, 2019, 37(2): 91-94. | |
3 | WANG Hanjie, DE VRIES FRITS P, JIN Yongcan. A win-win technique of stabilizing sand dune and purifying paper mill black-liquor[J]. Journal of Environmental Sciences, 2009, 21(4): 488-493. |
4 | LEE S, PARK J, KIM M C, et al. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25428-25437. |
5 | BIAN Huiyang, CHEN Lidong, DONG Maolin, et al. Natural lignocellulosic nanofibril film with excellent ultraviolet blocking performance and robust environment resistance[J]. International Journal of Biological Macromolecules, 2021, 166: 1578-1585. |
6 | ESPINOSA E, BASCÓN-VILLEGAS I, ROSAL A, et al. PVA/(ligno)nanocellulose biocomposite films. effect of residual lignin content on structural, mechanical, barrier and antioxidant properties[J]. International Journal of Biological Macromolecules, 2019, 141: 197-206. |
7 | LIU Weifeng, FANG Chang, WANG Shengyu, et al. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks[J]. Macromolecules, 2019, 52(17): 6474-6484. |
8 | TEJADO A, KORTABERRIA G, PEÑA C, et al. Lignins for phenol replacement in novolac-type phenolic formulations (Ⅱ): flexural and compressive mechanical properties[J]. Journal of Applied Polymer Science, 2008, 107(1): 159-165. |
9 | VENTURA-CRUZ S, TECANTE A. Nanocellulose and microcrystalline cellulose from agricultural waste: review on isolation and application as reinforcement in polymeric matrices[J]. Food Hydrocolloids, 2021, 118: 106771. |
10 | GERBIN E, RIVIÈRE G N, FOULON L, et al. Tuning the functional properties of lignocellulosic films by controlling the molecular and supramolecular structure of lignin[J]. International Journal of Biological Macromolecules, 2021, 181: 136-149. |
11 | FAROOQ M, ZOU T, RIVIERE G, et al. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles[J]. Biomacromolecules, 2019, 20(2): 693-704. |
12 | ARO T, FATEHI P. Production and application of lignosulfonates and sulfonated lignin[J]. ChemSusChem, 2017, 10(9): 1861-1877. |
13 | ZHAO Yadong, TAGAMI A, DOBELE G, et al. The impact of lignin structural diversity on performance of cellulose nanofiber (CNF)-starch composite films[J]. Polymers, 2019, 11(3): 538. |
14 | PARK S Y, KIM J Y, YOUN H J, et al. Utilization of lignin fractions in UV resistant lignin-PLA biocomposites via lignin-lactide grafting[J]. International Journal of Biological Macromolecules, 2019, 138: 1029-1034. |
15 | CHANG Libo, PENG Zhiyuan, ZHANG Tong, et al. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors[J]. Nanoscale, 2021, 13(5): 3079-3091. |
16 | SHANKAR S, REDDY J P, RHIM J W. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films[J]. International Journal of Biological Macromolecules, 2015, 81: 267-273. |
17 | JIANG Bo, CHEN Chaoji, LIANG Zhiqiang, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement[J]. Advanced Functional Materials, 2020, 30(4): 1906307. |
18 | HUANG Caoxing, DONG Huiling, ZHANG Zhipeng, et al. Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions[J]. Cellulose, 2020, 27(16): 9355-9370. |
19 | 储晶晶, 张莉莉, 王志国. 木质素基金属纳米粒子复合材料的制备及其应用研究进展[J]. 复合材料学报, 2020, 37(11): 2657-2673. |
CHU Jingjing, ZHANG Lili, WANG Zhiguo. Research progress of preparation and application of lignin-based metal nanoparticles composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2657-2673. | |
20 | WANG Wangxia, GU Feng, DENG Zhifei, et al. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging[J]. Carbohydrate Polymers, 2021, 255: 117431. |
21 | ZHANG Yazeng, WEI Yuan, QIAN Yangyang, et al. Lignocellulose enabled highly transparent nanopaper with tunable ultraviolet-blocking performance and superior durability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(46): 17033-17041. |
22 | TRIFOL J, MARIN QUINTERO D C, MORIANA R. Pine cone biorefinery: integral valorization of residual biomass into lignocellulose nanofibrils (LCNF)-reinforced composites for packaging[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2180-2190. |
23 | CHEN Yuan, FAN Dongbin, HAN Yanming, et al. Effect of high residual lignin on the properties of cellulose nanofibrils/films[J]. Cellulose, 2018, 25(11): 6421-6431. |
24 | ÄMMÄLÄ A, SIRVIÖ J A, LIIMATAINEN H. Energy consumption, physical properties and reinforcing ability of microfibrillated cellulose with high lignin content made from non-delignified spruce and pine sawdust[J]. Industrial Crops and Products, 2021, 170: 113738. |
25 | IMANI M, GHASEMIAN A, DEHGHANI-FIROUZABADI M R, et al. Coupling nanofibril lateral size and residual lignin to tailor the properties of lignocellulose films[J]. Advanced Materials Interfaces, 2019, 6(19): 1900770. |
26 | TRAVALINI A P, LAMSAL B, MAGALHÃES W L E, et al. Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse[J]. International Journal of Biological Macromolecules, 2019, 139: 1151-1161. |
27 | AGO M, FERRER A, ROJAS O J. Starch-based biofoams reinforced with lignocellulose nanofibrils from residual palm empty fruit bunches: water sorption and mechanical strength[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5546-5552. |
28 | WANG Xuan, JIA Yuan, LIU Zhen, et al. Influence of the lignin content on the properties of poly(lactic acid)/lignin-containing cellulose nanofibrils composite films[J]. Polymers, 2018, 10(9): 1013. |
29 | WANG Xizheng, XIA Qinqin, JING Shuangshuang, et al. Strong, hydrostable, and degradable straws based on cellulose-lignin reinforced composites[J]. Small, 2021, 17(18): e2008011. |
30 | MICHELIN M, MARQUES A M, PASTRANA L M, et al. Carboxymethyl cellulose-based films: effect of organosolv lignin incorporation on physicochemical and antioxidant properties[J]. Journal of Food Engineering, 2020, 285: 110107. |
31 | RUKMANIKRISHNAN B, RAJASEKHARAN S K, LEE J, et al. K-Carrageenan/lignin composite films: biofilm inhibition, antioxidant activity, cytocompatibility, UV and water barrier properties[J]. Materials Today Communications, 2020, 24: 101346. |
32 | SONG Yijia, CHEN Sheng, CHEN Yanglei, et al. Biodegradable and transparent films with tunable UV-blocking property from Lignocellulosic waste by a top-down approach[J]. Cellulose, 2021, 28(13): 8629-8640. |
33 | EWULONU C M, LIU Xuran, WU Min, et al. Ultrasound-assisted mild sulphuric acid ball milling preparation of lignocellulose nanofibers (LCNFs) from sunflower stalks (SFS)[J]. Cellulose, 2019, 26(7): 4371-4389. |
34 | MOHAMMADALINEJHAD S, ALMASI H, ESMAIILI M. Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films[J]. Materials Chemistry and Physics, 2021, 268: 124719. |
35 | DOU Jinze, VUORINEN T, KOIVULA H, et al. Self-standing lignin-containing willow bark nanocellulose films for oxygen blocking and UV shielding[J]. ACS Applied Nano Materials, 2021, 4(3): 2921-2929. |
36 | ZHANG Chuanwei, NAIR S S, CHEN Heyu, et al. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils[J]. Carbohydrate Polymers, 2020, 230: 115626. |
37 | ALBADARIN A B, AL-MUHTASEB A H, AL-LAQTAH N A, et al. Biosorption of toxic chromium from aqueous phase by lignin: Mechanism, effect of other metal ions and salts[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 20-30. |
38 | RAK M J, FRIŠČIĆ T, MOORES A. Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix[J]. Faraday Discussions, 2014, 170: 155-167. |
39 | WANG Xiao, WANG Shanyong, LIU Wei, et al. Facile fabrication of cellulose composite films with excellent UV resistance and antibacterial activity[J]. Carbohydrate Polymers, 2019, 225: 115213. |
40 | KOKTA B V, CHEN Rubie, DANEAULT C, et al. Use of wood fibers in thermoplastic composites[J]. Polymer Composites, 1983, 4(4): 229-232. |
41 | ALIABADI M, CHEE B S, MATOS M, et al. Microfibrillated cellulose films containing chitosan and tannic acid for wound healing applications[J]. Journal of Materials Science Materials in Medicine, 2021, 32(6): 67. |
42 | SIRVIÖ J A, KOLEHMAINEN A, LIIMATAINEN H, et al. Biocomposite cellulose-alginate films: promising packaging materials[J]. Food Chemistry, 2014, 151: 343-351. |
43 | FU Denghao, NETRAVALI A N. Green composites based on avocado seed starch and nano- and micro-scale cellulose[J]. Polymer Composites, 2020, 41(11): 4631-4648. |
44 | MA Yunhao, TENG Anguo, ZHAO Kaixuan, et al. A top-down approach to improve collagen film’s performance: the comparisons of macro, micro and nano sized fibers[J]. Food Chemistry, 2020, 309: 125624. |
45 | XU Yanfang, QIAN Kunpeng, DENG Dongmei, et al. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films[J]. Carbohydrate Polymers, 2020, 250: 116915. |
46 | WANG Yingchao, LIU Shanshan, WANG Qiang, et al. Strong, ductile and biodegradable polylactic acid/lignin-containing cellulose nanofibril composites with improved thermal and barrier properties[J]. Industrial Crops and Products, 2021, 171: 113898. |
47 | SAARIKOSKI E, RISSANEN M, SEPPÄLÄ J. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming[J]. Carbohydrate Polymers, 2015, 119: 62-70. |
48 | CHENG Geng, ZHOU Mi, WEI Yujun, et al. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites[J]. Polymer Composites, 2019, 40(S1): E365-E372. |
49 | FADEL S M, HASSAN M L, OKSMAN K. Improving tensile strength and moisture barrier properties of gelatin using microfibrillated cellulose[J]. Journal of Composite Materials, 2013, 47(16): 1977-1985. |
50 | JAYAPRADA M, UMAPATHY M J. Preparation and properties of a microfibrillated cellulose reinforced pectin/fenugreek gum biocomposite[J]. New Journal of Chemistry, 2020, 44(43): 18792-18802. |
51 | MAO Jiangchun, TANG Yanjun, ZHAO Ruonan, et al. Preparation of nanofibrillated cellulose and application in reinforced PLA/starch nanocomposite film[J]. Journal of Polymers and the Environment, 2019, 27(4): 728-738. |
52 | GRANDA L A, OLIVER-ORTEGA H, FABRA M J, et al. Improved process to obtain nanofibrillated cellulose (CNF) reinforced starch films with upgraded mechanical properties and barrier character[J]. Polymers, 2020, 12(5): 1071. |
53 | TALEBI H, GHASEMI F A, ASHORI A. The effect of nanocellulose on mechanical and physical properties of chitosan-based biocomposites[J]. Journal of Elastomers & Plastics, 2022, 54(1): 22-41. |
54 | DOS SANTOS T A, DE OLIVEIRA A C S, LAGO A M T, et al. Properties of chitosan-papain biopolymers reinforced with cellulose nanofibers[J]. Journal of Food Processing and Preservation, 2021, 45(9): e15740. |
55 | LI Jiali, ZHOU Mi, CHENG Geng, et al. Comparison of mechanical reinforcement effects of cellulose nanofibers and montmorillonite in starch composite[J]. Starch, 2019, 71(1/2): 1800114. |
56 | RAO Jun, Ziwen LYU, DING Qiqi, et al. Rapid processing of holocellulose-based nanopaper toward an electrode material[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3337-3346. |
57 | DIOP C I K, TAJVIDI M, BILODEAU M A, et al. Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards[J]. Industrial Crops and Products, 2017, 109: 27-36. |
58 | AMINI E, HAFEZ I, TAJVIDI M, et al. Cellulose and lignocellulose nanofibril suspensions and films: a comparison[J]. Carbohydrate Polymers, 2020, 250: 117011. |
59 | ROJO E, PERESIN M S, SAMPSON W W, et al. Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films[J]. Green Chemistry, 2015, 17(3): 1853-1866. |
60 | TANGUY N R, WU Haoran, NAIR S S, et al. Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes[J]. ChemSusChem, 2021, 14(4): 1057-1067. |
61 | LIU Chaozheng, LI Meichun, CHEN Weimin, et al. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement[J]. Carbohydrate Polymers, 2020, 246: 116548. |
62 | JAHED E, KHALEDABAD M A, BARI M R, et al. Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films[J]. Reactive and Functional Polymers, 2017, 117: 70-80. |
63 | YANG W, FORTUNATI E, DOMINICI F, et al. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films[J]. International Journal of Biological Macromolecules, 2016, 89: 360-368. |
64 | ALZAGAMEEM A, KLEIN S E, BERGS M, et al. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms[J]. Polymers, 2019, 11(4): 670. |
65 | YANG W, FORTUNATI E, DOMINICI F, et al. Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging[J]. European Polymer Journal, 2016, 79: 1-12. |
66 | IBRAHIM S, ELSAYED H, HASANIN M. Biodegradable, antimicrobial and antioxidant biofilm for active packaging based on extracted gelatin and lignocelluloses biowastes[J]. Journal of Polymers and the Environment, 2021, 29(2): 472-482. |
67 | JIN W, TOLBA R, WEN J L, et al. Efficient extraction of lignin from black liquor via a novel membrane-assisted electrochemical approach[J]. Electrochimica Acta, 2013, 107: 611-618. |
68 | CHEN X Y, KUO D H, LU D F, et al. Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template[J]. Microporous and Mesoporous Materials, 2016, 223: 145-151. |
69 | GONZALEZ Z, YUS J, BRAVO Y, et al. Heteroacoagulation of lignocellulose fibers-based biotemplates and functionalized TiO2 nanoparticles to tailor film microstructures[J]. Cellulose, 2020, 27(13): 7543-7559. |
70 | XIE Weigui, DANG Yanping, WU Lin, et al. Experimental and molecular simulating study on promoting electrolyte-immersed mechanical properties of cellulose/lignin separator for lithium-ion battery[J]. Polymer Testing, 2020, 90: 106773. |
71 | DJELLABI R, YANG B, XIAO K, et al. Unravelling the mechanistic role of TiOC bonding bridge at titania/lignocellulosic biomass interface for Cr(VI) photoreduction under visible light[J]. Journal of Colloid and Interface Science, 2019, 553: 409-417. |
72 | MOHAN D, PITTMAN C U, STEELE P H. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—A biosorbent[J]. Journal of Colloid and Interface Science, 2006, 297(2): 489-504. |
73 | CHU Jingjing, MA Huazhong, ZHANG Lili, et al. Biomass-derived paper-based nanolignin/palladium nanoparticle composite film for catalytic reduction of hexavalent chromium[J]. Industrial Crops and Products, 2021, 165: 113439. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[7] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[8] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[9] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[12] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[13] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[14] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[15] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |