1 |
GUO Tiezhu, ZHOU Di, LIU Wenfeng, et al. Recent advances in all-in-one flexible supercapacitors[J]. Science China Materials, 2021, 64(1): 27-45.
|
2 |
KUMAR S, SAEED G, ZHU Ling, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review[J]. Chemical Engineering Journal, 2021, 403: 126352.
|
3 |
陈娟, 范利丹, 胡潇依, 等. 固态柔性超级电容器构筑及其材料的研究进展[J]. 化工进展, 2019, 38(10): 4623-4631.
|
|
CHEN Juan, FAN Lidan, HU Xiaoyi, et al. Research progress of construction and materials of solid-state flexible supercapacitors[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4623-4631.
|
4 |
XIE Qinxing, BAO Rongrong, XIE Chao, et al. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density[J]. Journal of Power Sources, 2016, 317: 133-142.
|
5 |
WANG J, RAN R, SUNARSO J, et al. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels[J]. Journal of Power Sources, 2017, 347: 259-269.
|
6 |
LUO Yongfeng, LI Xi, ZHANG Jianxiong, et al. The carbon nanotube fibers for optoelectric conversion and energy storage[J]. Journal of Nanomaterials, 2014, 2014: 580256.
|
7 |
AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614.
|
8 |
CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5(1): 5-19.
|
9 |
卿乐英. 基于结构热力学的电容器能量密度与功率密度微观机理研究[D]. 上海: 华东理工大学, 2021.
|
|
QING Leying. Micromechanisms on the energy density and power density of capacitors by structured thermodynamics[D]. Shanghai: East China University of Science and Technology, 2021.
|
10 |
SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280.
|
11 |
KAVERLAVANI S K, MOOSAVIFARD S E, BAKOUEI A. Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(27): 14301-14309.
|
12 |
HARILAL M, VIDYADHARAN B, MISNON I I, et al. One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10730-10742.
|
13 |
MOHD ABDAH M A A, AZMAN N H N, KULANDAIVALU S, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Materials & Design, 2020, 186: 108199.
|
14 |
OUYANG Yu, ZHANG Bin, WANG Chengxin, et al. Bimetallic metal-organic framework derived porous NiCo2S4 nanosheets arrays as binder-free electrode for hybrid supercapacitor[J]. Applied Surface Science, 2021, 542: 148621.
|
15 |
ŁUKAWSKI D, GRZEŚKOWIAK W, LEKAWA-RAUS A, et al. Flame retardant effect of lignin/carbon nanotubes/potassium carbonate composite coatings on cotton roving[J]. Cellulose, 2020, 27(12): 7271-7281.
|
16 |
JAYARAMULU K, HORN M, SCHNEEMANN A, et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors[J]. Advanced Materials, 2021, 33(4): 2004560.
|
17 |
AJJAN F N, CASADO N, RĘBIŚ T, et al. High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(5): 1838-1847.
|
18 |
SUN Q N, KHUNSUPAT R, AKATO K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors[J]. Green Chemistry, 2016, 18(18): 5015-5024.
|
19 |
GRAICHEN F H M, GRIGSBY W J, HILL S J, et al. Yes, we can make money out of lignin and other bio-based resources[J]. Industrial Crops and Products, 2017, 106: 74-85.
|
20 |
FANG Wei, YANG Sheng, WANG Xiluan, et al. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs)[J]. Green Chemistry, 2017, 19(8): 1794-1827.
|
21 |
徐慧民, 李莉娟, 欧阳新华, 等. 木质素基超级电容器电极材料研究进展[J]. 中国造纸学报, 2021, 36(1): 80-87.
|
|
XU Huimin, LI Lijuan, OUYANG Xinhua, et al. Research advance in lignin-based supercapacitor materials[J]. Transactions of China Pulp and Paper, 2021, 36(1): 80-87.
|
22 |
LIAN Qingwang, ZHOU Gang, LIU Jiatu, et al. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling[J]. Journal of Power Sources, 2017, 366: 1-8.
|
23 |
JEON J W, ZHANG L B, LUTKENHAUS J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem, 2015, 8(3): 428-432.
|
24 |
呼延永江, 高帆. 石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J]. 中国造纸学报, 2020, 35(1): 33-38.
|
|
HUYAN Yongjiang, GAO Fan. Effect of graphene doping on the electrochemical properties of lignin-based carbon nanofibers[J]. Transactions of China Pulp and Paper, 2020, 35(1): 33-38.
|
25 |
JIANG Can, WANG Zuhao, LI Jiaxiong, et al. RGO-templated lignin-derived porous carbon materials for renewable high-performance supercapacitors[J]. Electrochimica Acta, 2020, 353: 136482.
|
26 |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.
|
27 |
彭志远. 全生物质基柔性超级电容器的研究[D]. 长沙: 湖南大学, 2018.
|
|
PENG Zhiyuan. The study of all biomass-based flexible supercapcitors[D]. Changsha: Hunan University, 2018.
|
28 |
冯鑫佳. π-π作用和疏水效应对碱木质素聚集行为的影响[D]. 广州: 华南理工大学, 2012.
|
|
FENG Xinjia. Inlfuence of π-π interaction and hydrophobic effect on the aggregation behavior of alkali lignin[D]. Guangzhou: South China University of Technology, 2012.
|
29 |
CHEN Feng, ZHOU Wenjing, YAO Hongfei, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry, 2013, 15(11): 3057-3063.
|
30 |
ZHOU Zeping, CHEN Feng, KUANG Tairong, et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J]. Electrochimica Acta, 2018, 274: 288-297.
|
31 |
YU B M, GELE A R, WANG L P. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors[J]. International Journal of Biological Macromolecules, 2018, 118(Pt A): 478-484.
|
32 |
RANJITH K S, RAJU G S R, CHODANKAR N R, et al. Lignin-derived carbon nanofibers-laminated redox-active-mixed metal sulfides for high-energy rechargeable hybrid supercapacitors[J]. International Journal of Energy Research, 2021, 45(5): 8018-8029.
|
33 |
XIA Xinhui, TU Jiangping, ZHANG Yongqi, et al. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage[J]. ACS Nano, 2012, 6(6): 5531-5538.
|
34 |
JI Xiaoqin, SUN Delin, ZOU Weihua, et al. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials[J]. Journal of Alloys and Compounds, 2021, 876: 160112.
|
35 |
SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12.
|
36 |
WANG Li, LI Xingwei, XU Hailing, et al. Construction of polyaniline/lignin composite with interpenetrating fibrous networks and its improved electrochemical capacitance performances[J]. Synthetic Metals, 2019, 249: 40-46.
|
37 |
DIXON R, D’SOUZA N, CHEN F, et al. Methods for producing carbon fibers from poly-(caffeyl alcohol): US9890480[P]. 2018-02-13.
|
38 |
Tian LYU, LIU Mingxian, ZHU Dazhang, et al. Nanocarbon-based materials for flexible all-solid-state supercapacitors[J]. Advanced Materials, 2018, 30(17): e1705489.
|
39 |
DAI Zhong, REN Penggang, JIN Yanling, et al. Nitrogen-sulphur co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437: 226937.
|
40 |
MAHMOOD F, ZHANG Hanwen, LIN Jian, et al. Laser-induced graphene derived from kraft lignin for flexible supercapacitors[J]. ACS Omega, 2020, 5(24): 14611-14618.
|
41 |
JHA S, MEHTA S, CHEN Yan, et al. NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3418-3430.
|
42 |
MEHTA S, JHA S, HUANG Dali, et al. Microwave synthesis of MnO2-lignin composite electrodes for supercapacitors[J]. Journal of Composites Science, 2021, 5(8): 216.
|
43 |
NAVARRO S A M, NEREA C, JAVIER C G, et al. Full-cell quinone/hydroquinone supercapacitors based on partially reduced graphite oxide and lignin/PEDOT electrodes[J]. Journal of Materials Chemistry A, 2017, 5(15): 7137-7143.
|
44 |
WANG Keliang, XU Ming, GU Yan, et al. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes[J]. Journal of Power Sources, 2016, 332: 180-186.
|
45 |
CAO Qiping, ZHU Mengni, CHEN Jia'ai, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221.
|
46 |
PENG Zhiyuan, ZOU Yubo, XU Shiqi, et al. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22190-22200.
|
47 |
SHEN H, GELE A R. Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes[J]. Inorganic Chemistry Communications, 2021, 128: 108607.
|
48 |
AJJAN F N, VAGIN M, RĘBIŚ T, et al. Scalable asymmetric supercapacitors based on hybrid organic/biopolymer electrodes[J]. Advanced Sustainable Systems, 2017, 1(8): 1700054.
|
49 |
LEI D Y, LI X D, SEO M K, et al. NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors[J]. Polymer, 2017, 132: 31-40.
|
50 |
TANGUY N R, WU H R, NAIR S S, et al. Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes[J]. ChemSusChem, 2021, 14(4): 1057-1067.
|