化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4866-4883.DOI: 10.16085/j.issn.1000-6613.2021-2405
收稿日期:
2021-11-23
修回日期:
2022-03-16
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
郑红
作者简介:
边宇(1996—),女,硕士研究生,研究方向为环境化学。E-mail:2103190087@cugb.edu.cn。
基金资助:
BIAN Yu(), ZHANG Baichao, ZHENG Hong()
Received:
2021-11-23
Revised:
2022-03-16
Online:
2022-09-25
Published:
2022-09-27
Contact:
ZHENG Hong
摘要:
共价有机框架(covalent organic frameworks,COFs)是一类通过共价键连接有机构筑单元设计组装而成的具有周期性二维(2D)或三维(3D)网状结构的多孔有机聚合物,具有高比表面积、低密度、高度有序的周期性结构和易于功能化等特点。与单一孔COFs相比,多级孔COFs具有分级的孔道结构、不同的孔环境、极易接近的活性位、优异的传质和扩散性能,在气体分离和储存、环境治理、光电、生物医药、催化等领域具有更为广阔的应用前景。但由于多级孔COFs合成条件苛刻,其结构多样性仍然十分有限。本文从反应类型、设计策略、合成方法、功能化修饰、应用领域等方面系统地综述了多级孔COFs的研究进展,提出开发更多的单体、键合类型、拓扑结构,拓展更多的修饰手段,充分发挥多级孔结构优势的发展趋势。未来通过不断探索与研究,一定能开发出更多具有新的拓扑结构、不断提高的性能及更多新的应用的多级孔COFs材料,实现多级孔COFs快速、高效、低成本的加工成型,使其在能源、生物、环境、催化等领域发挥出不可替代的作用。
中图分类号:
边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883.
BIAN Yu, ZHANG Baichao, ZHENG Hong. Design, syntheses and applications of covalent organic frameworks with hierarchical porosities[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4866-4883.
1 | LIANG Rongran, ZHAO Xin. Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities[J]. Organic Chemistry Frontiers, 2018, 5(22): 3341-3356. |
2 | MITRA T, WU X F, CLOWES R, et al. A soft porous organic cage crystal with complex gas sorption behavior[J]. Chemistry: a European Journal, 2011, 17(37): 10235-10240. |
3 | HE Yabing, ZHOU Wei, QIAN Guodong, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5657-5678. |
4 | VENKATARAMAN D, LEE S, ZHANG J S, et al. An organic solid with wide channels based on hydrogen bonding between macrocycles[J]. Nature, 1994, 371(6498): 591-593. |
5 | XIANG Zhonghua, CAO Dapeng. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718. |
6 | JIANG J X, SU F B, TREWIN A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie, 2007, 119(45): 8728-8732. |
7 | ZENG Fanxin, LIU Wujun, LUO Shiwei, et al. Design, preparation, and characterization of a novel hyper-cross-linked polyphosphamide polymer and its adsorption for phenol[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11614-11619. |
8 | BUDD P M, ELABAS E S, GHANEM B S, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5): 456-459. |
9 | FENG Xiao, DING Xuesong, JIANG Donglin. Covalent organic frameworks[J]. Chemical Society Reviews, 2012, 41(18): 6010-6022. |
10 | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
11 | HUANG Ning, WANG Ping, JIANG Donglin. Covalent organic frameworks: a materials platform for structural and functional designs[J]. Nature Reviews Materials, 2016, 1(10): 16068. |
12 | DIERCKS C S, YAGHI O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. |
13 | DIERCKS C S, KALMUTZKI M J, YAGHI O M. Covalent organic frameworks-organic chemistry beyond the molecule[J]. Molecules, 2017, 22(9): 1575. |
14 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
15 | WALLER P J, GÁNDARA F, YAGHI O M. Chemistry of covalent organic frameworks[J]. Accounts of Chemical Research, 2015, 48(12): 3053-3063. |
16 | BISBEY R P, DICHTEL W R. Covalent organic frameworks as a platform for multidimensional polymerization[J]. ACS Central Science, 2017, 3(6): 533-543. |
17 | LOHSE M S, BEIN T. Covalent organic frameworks: covalent organic frameworks: structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1870229. |
18 | 刘春晖, 马晓莉. 共价有机框架材料的最新进展[J]. 化工进展, 2019, 38(11): 4978-4990. |
LIU Chunhui, MA Xiaoli. Latest development of covalent organic frameworks[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4978-4990. | |
19 | 王珊, 冯霄, 王博. 共价有机框架材料的设计与制备[J]. 科学通报, 2018, 63(22):2229-2245. |
WANG Shan, FENG Xiao, WANG Bo. Design and synthesis of covalent organic frameworks[J]. Chinese Science Bulletin, 2018, 63(22): 2229-2245. | |
20 | HAN S S, FURUKAWA H, YAGHI O M, et al. Covalent organic frameworks as exceptional hydrogen storage materials[J]. Journal of the American Chemical Society, 2008, 130(35): 11580-11581. |
21 | ROGGE S M J, BAVYKINA A, HAJEK J, et al. Metal-organic and covalent organic frameworks as single-site catalysts[J]. Chemical Society Reviews, 2017, 46(11): 3134-3184. |
22 | GAO Qiang, LI Xing, NING Guohong, et al. Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing[J]. Chemical Communications, 2018, 54(19): 2349-2352. |
23 | LEI Zhendong, YANG Qinsi, XU Yi, et al. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry[J]. Nature Communications, 2018, 9: 576. |
24 | SICK T, HUFNAGEL A G, KAMPMANN J, et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting[J]. Journal of the American Chemical Society, 2018, 140(6): 2085-2092. |
25 | URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13): 4570-4571. |
26 | MA Li, WANG Shan, FENG Xiao, et al. Recent advances of covalent organic frameworks in electronic and optical applications[J]. Chinese Chemical Letters, 2016, 27(8): 1383-1394. |
27 | 钱成. 二维异孔共价有机框架构筑新策略的研究[D]. 长沙: 湖南大学, 2018. |
QIAN Cheng. A study on novel strategies for constructing 2D heteropore covalent organic frameworks[D]. Changsha: Hunan University, 2018. | |
28 | 葛胜涛, 邓先功, 毕玉保, 等. 多级孔材料研究进展[J]. 材料导报, 2018, 32(13): 2195-2201, 2213. |
GE Shengtao, DENG Xiangong, BI Yubao, et al. Research progress of hierarchical porous materials[J]. Materials Review, 2018, 32(13): 2195-2201, 2213. | |
29 | KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie International Edition, 2008, 47(18): 3450-3453. |
30 | BOJDYS M J, JEROMENOK J, THOMAS A, et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity[J]. Advanced Materials, 2010, 22(19): 2202-2205. |
31 | WANG Keke, HUANG Hongliang, LIU Dahuan, et al. Covalent triazine-based frameworks with ultramicropores and high nitrogen contents for highly selective CO2 capture[J]. Environmental Science & Technology, 2016, 50(9): 4869-4876. |
32 | URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. Journal of the American Chemical Society, 2011, 133(30): 11478-11481. |
33 | DAS G, SKORJANC T, SHARMA S K, et al. Viologen-based conjugated covalent organic networks via zincke reaction[J]. Journal of the American Chemical Society, 2017, 139(28): 9558-9565. |
34 | NAGAI A, CHEN Xiong, FENG Xiao, et al. A squaraine-linked mesoporous covalent organic framework[J]. Angewandte Chemie International Edition, 2013, 52(13): 3770-3774. |
35 | ZHUANG Xiaodong, ZHAO Wuxue, ZHANG Fan, et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton[J]. Polymer Chemistry, 2016, 7(25): 4176-4181. |
36 | RAO M R, FANG Y, DE FEYTER S, et al. Conjugated covalent organic frameworks via Michael addition-elimination[J]. Journal of the American Chemical Society, 2017, 139(6): 2421-2427. |
37 | YANG Haishen, DU Ya, WAN Shun, et al. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles[J]. Chemical Science, 2015, 6(7): 4049-4053. |
38 | BALDWIN L A, CROWE J W, SHANNON M D, et al. 2D covalent organic frameworks with alternating triangular and hexagonal pores[J]. Chemistry of Materials, 2015, 27(18): 6169-6172. |
39 | DALAPATI S, JIN E Q, ADDICOAT M, et al. Highly emissive covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(18): 5797-5800. |
40 | ZHOU Tianyou, XU Shunqi, WEN Qiang, et al. One-step construction of two different kinds of pores in a 2D covalent organic framework[J]. Journal of the American Chemical Society, 2014, 136(45): 15885-15888. |
41 | TIAN Yuan, XU Shunqi, LIANG Rongran, et al. Construction of two heteropore covalent organic frameworks with Kagome lattices[J]. CrystEngComm, 2017, 19(33): 4877-4881. |
42 | QIAN Cheng, QI Qiaoyan, JIANG Guofang, et al. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange[J]. Journal of the American Chemical Society, 2017, 139(19): 6736-6743. |
43 | LI Yusen, CHEN Qing, XU Tiantian, et al. De novo design and facile synthesis of 2D covalent organic frameworks: a two-in-one strategy[J]. Journal of the American Chemical Society, 2019, 141(35): 13822-13828. |
44 | ABUZEID H R, EL-MAHDY A F M, KUO S W. Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units[J]. Microporous and Mesoporous Materials, 2020, 300: 110151. |
45 | WALLER P J, LYLE S J, OSBORN POPP T M, et al. Chemical conversion of linkages in covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15519-15522. |
46 | PANG Zhongfu, XU Shunqi, ZHOU Tianyou, et al. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy[J]. Journal of the American Chemical Society, 2016, 138(14): 4710-4713. |
47 | JIN S B, SAKURAI T, KOWALCZYK T, et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts[J]. Chemistry: A European Journal, 2014, 20(45): 14608-14613. |
48 | CROWE J W, BALDWIN L A, MCGRIER P L. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units[J]. Journal of the American Chemical Society, 2016, 138(32): 10120-10123. |
49 | KELLER N, SICK T, BACH N N, et al. Dibenzochrysene enables tightly controlled docking and stabilizes photoexcited states in dual-pore covalent organic frameworks[J]. Nanoscale, 2019, 11(48): 23338-23345. |
50 | DONG Jinqiao, LI Xu, Shing Bo PEH, et al. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification[J]. Chemistry of Materials, 2019, 31(1): 146-160. |
51 | LIANG Rongran, CUI Fuzhi, Ruhan A, et al. A study on constitutional isomerism in covalent organic frameworks: controllable synthesis, transformation, and distinct difference in properties[J]. CCS Chemistry, 2020, 2(2): 139-145. |
52 | COOPER A I. Conjugated microporous polymers[J]. Advanced Materials, 2009, 21(12): 1291-1295. |
53 | RITCHIE L K, TREWIN A, REGUERA-GALAN A, et al. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes[J]. Microporous and Mesoporous Materials, 2010, 132(1/2): 132-136. |
54 | WEI Hao, CHAI Shuangzhi, HU Nantao, et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chemical Communications, 2015, 51(61): 12178-12181. |
55 | GUAN Xinyu, MA Yunchao, LI Hui, et al. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(13): 4494-4498. |
56 | BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(14): 5328-5331. |
57 | DAS G, BALAJI SHINDE D, KANDAMBETH S, et al. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding[J]. Chemical Communications, 2014, 50(84): 12615-12618. |
58 | COLSON J W, WOLL A R, MUKHERJEE A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene[J]. Science, 2011, 332(6026): 228-231. |
59 | DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. |
60 | DAI W Y, SHAO F, SZCZERBIŃSKI J, et al. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angewandte Chemie, 2016, 128(1): 221-225. |
61 | GUAN Cuizhong, WANG Dong, WAN Lijun. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation[J]. Chemical Communications, 2012, 48(24): 2943-2945. |
62 | WANG Z Q, COHEN S M. Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach[J]. Journal of the American Chemical Society, 2009, 131(46): 16675-16677. |
63 | COHEN S M. Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 970-1000. |
64 | HE H B, CARBALLO-JANE E, TONG X C, et al. Measurement of catecholamines in rat and mini-pig plasma and urine by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction[J]. Journal of Chromatography B, 2015, 997: 154-161. |
65 | PANG Zhongfu, ZHOU Tianyou, LIANG Rongran, et al. Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents[J]. Chemical Science, 2017, 8(5): 3866-3870. |
66 | CUI Fuzhi, LIANG Rongran, QI Qiaoyan, et al. Efficient removal of Cr(Ⅵ) from aqueous solutions by a dual-pore covalent organic framework[J]. Advanced Sustainable Systems, 2019, 3(4): 1800150. |
67 | GUO L, JIA S, DIERCKS C S, et al. Amidation, esterification, and thioesterification of a carboxyl-functionalized covalent organic framework[J]. Angewandte Chemie International Edition, 2020, 59(5): 2023-2027. |
68 | FURUKAWA H, YAGHI O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
69 | DOONAN C J, TRANCHEMONTAGNE D J, GLOVER T G, et al. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2(3): 235-238. |
70 | LI Zhongping, ZHI Yongfeng, FENG Xiao, et al. An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage[J]. Chemistry: A European Journal, 2015, 21(34): 12079-12084. |
71 | YIN Zhijian, XU Shunqi, ZHAN Tianguang, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53(53): 7266-7269. |
72 | HUANG Ning, ZHAI Lipeng, XU Hong, et al. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions[J]. Journal of the American Chemical Society, 2017, 139(6): 2428-2434. |
73 | SUN Q, AGUILA B, PERMAN J, et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793. |
74 | LI Wei, JIANG Hongxin, GENG Yue, et al. Facile removal of phytochromes and efficient recovery of pesticides using heteropore covalent organic framework-based magnetic nanospheres and electrospun films[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20922-20932. |
75 | XIONG Yifeng, LIAO Qiaobo, HUANG Zhengping, et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene[J]. Advanced Materials, 2020, 32(9): e1907242. |
76 | ZHAO F L, LIU H M, MATHE S D R, et al. Covalent organic frameworks: from materials design to biomedical application[J]. Nanomaterials, 2017, 8(1): 15. |
77 | SUN Q, AGUILA B, LAN P C, et al. Tuning pore heterogeneity in covalent organic frameworks for enhanced enzyme accessibility and resistance against denaturants[J]. Advanced Materials, 2019, 31(19): e1900008. |
78 | SUN Q, FU C-W, AGUILA B, et al. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(3): 984-992. |
79 | FANG Qianrong, GU Shuang, ZHENG Jie, et al. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angewandte Chemie International Edition, 2014, 53(11): 2878-2882. |
80 | DIERCKS C S, LIN S, KORNIENKO N, et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction[J]. Journal of the American Chemical Society, 2018, 140(3): 1116-1122. |
81 | WANG Kewei, YANG Liming, WANG Xi, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angewandte Chemie International Edition, 2017, 56(45): 14149-14153. |
82 | VARDHAN H, AL-ENIZI A M, NAFADY A, et al. Single-pore versus dual-pore bipyridine-based covalent-organic frameworks: an insight into the heterogeneous catalytic activity for selective C—H functionalization[J]. Small, 2021, 17(22): e2003970. |
83 | YANG Yan, LU Yang, ZHANG Hongyu, et al. Decoration of active sites in covalent-organic framework: an effective strategy of building efficient photocatalysis for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13376-13384. |
[1] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[2] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[3] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[4] | 唐春霞, 李萌, 王玉玺, 宗永忠, 付少海. Cr(Ⅵ)去除用功能化纤维素纳米材料的结构设计研究进展[J]. 化工进展, 2023, 42(2): 585-594. |
[5] | 马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352. |
[6] | 徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J]. 化工进展, 2023, 42(10): 5259-5271. |
[7] | 陈治平, 石发翔, 周文武, 杨志远, 周安宁. 烃类异构化小粒径、多级孔SAPO-11分子筛催化剂研究进展[J]. 化工进展, 2022, 41(9): 4767-4781. |
[8] | 陈琦, 王文涛, 张志鹏, 晏太红. 共价有机框架材料对放射性核素吸附的研究进展[J]. 化工进展, 2021, 40(S2): 241-255. |
[9] | 岳孟, 郑琼, 阎景旺, 张华民, 李先锋. 液流电池流场结构设计与优化研究进展[J]. 化工进展, 2021, 40(9): 4853-4868. |
[10] | 杜艳泽, 秦波, 王会刚, 郝文月, 高杭, 方向晨. 多级孔分子筛在重油加氢裂化催化剂的应用进展[J]. 化工进展, 2021, 40(4): 1859-1867. |
[11] | 陈建松, 孙楠楠, 高强, 魏伟. 基于Aldol缩合反应的碳碳双键共价有机框架材料的设计合成[J]. 化工进展, 2021, 40(12): 6765-6776. |
[12] | 邓秀春, 卓祖优, 白小杰, 孙杰, 陈燕丹. 银耳菌糠衍生的三维多级孔炭及其电化学应用性能[J]. 化工进展, 2021, 40(10): 5642-5651. |
[13] | 王晓晨. 多级孔金属有机骨架材料的合成及其在生物医药中的应用研究进展[J]. 化工进展, 2021, 40(1): 346-353. |
[14] | 王学科, 沈义伟, 赵洪滨, 曹岭, 陈山, 贾彩, 谢晓峰. 旋涡式氢气循环泵的设计及性能分析[J]. 化工进展, 2020, 39(S2): 89-96. |
[15] | 倪永涛, 赵钦新, 桂雍, 王云刚, 邵怀爽. 两级低压引射器的结构设计与数值分析[J]. 化工进展, 2020, 39(S1): 69-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |