化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4767-4781.DOI: 10.16085/j.issn.1000-6613.2021-2414
陈治平1,2,3(), 石发翔1, 周文武1,2,3(), 杨志远1,2,3, 周安宁1,2,3
收稿日期:
2021-11-24
修回日期:
2022-01-19
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
周文武
作者简介:
陈治平(1982—),男,博士,硕士生导师,研究方向为多孔材料与催化反应工程。E-mail:cupczp@163.com。
基金资助:
CHEN Zhiping1,2,3(), SHI Faxiang1, ZHOU Wenwu1,2,3(), YANG Zhiyuan1,2,3, ZHOU Anning1,2,3
Received:
2021-11-24
Revised:
2022-01-19
Online:
2022-09-25
Published:
2022-09-27
Contact:
ZHOU Wenwu
摘要:
由于小粒径、多级孔或兼具小粒径与多级孔结构的SAPO-11分子筛能够显著提高SAPO-11分子筛催化剂在烃类加氢异构化中的活性和选择性,近年来已成为烃类异构化催化剂研究的热点。本文按照SAPO-11分子筛的制备方法进行分类,系统介绍了小粒径、多级孔和兼具小粒径与多级孔结构的SAPO-11分子筛的制备及其临氢异构化性能,指出在今后的研究中,研究开发新的绿色高效合成方法,降低合成成本和减少环境污染是小粒径或(和)多级孔SAPO-11分子筛催化剂实现工业化应用亟待解决的突出问题和研究方向。
中图分类号:
陈治平, 石发翔, 周文武, 杨志远, 周安宁. 烃类异构化小粒径、多级孔SAPO-11分子筛催化剂研究进展[J]. 化工进展, 2022, 41(9): 4767-4781.
CHEN Zhiping, SHI Faxiang, ZHOU Wenwu, YANG Zhiyuan, ZHOU Anning. Study on SAPO-11 molecular sieve catalyst with small particle size and hierarchical pores for isomerization of hydrocarbons[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4767-4781.
项目 | Pt/H-SAPO-11 | Pt/H-SAPO-11-H1 |
---|---|---|
K①/10-6mol·g-1·s-1 | 5.1 | 33.2 |
TOF②/10-2 s-1 | 5.5 | 17.5 |
SMB③/% | 86.1 | 74.0 |
SDB③/% | 2.4 | 23.9 |
i-C4/n-C4 | 0.58 | 1.5 |
i-C5/n-C5 | 0.51 | 1.1 |
(C3+C5)/2C4 | 0.7 | 0.68 |
PS③/% | ||
2-MC7 | 40.6 | 30.0 |
3-MC7 | 36.8 | 36.1 |
4-MC7 | 8.7 | 7.9 |
2,2-DMC6 | 0.0 | 1.5 |
2,3-DMC6 | 0.2 | 2.6 |
2,4-DMC6 | 0.6 | 9.5 |
2,5-DMC6 | 1.6 | 10.3 |
裂化产物 | 11.5 | 2.1 |
表1 常规Pt/H-SAPO-11和多级孔Pt/H-SAPO-11-H1催化剂上正辛烷的异构化结果[21]
项目 | Pt/H-SAPO-11 | Pt/H-SAPO-11-H1 |
---|---|---|
K①/10-6mol·g-1·s-1 | 5.1 | 33.2 |
TOF②/10-2 s-1 | 5.5 | 17.5 |
SMB③/% | 86.1 | 74.0 |
SDB③/% | 2.4 | 23.9 |
i-C4/n-C4 | 0.58 | 1.5 |
i-C5/n-C5 | 0.51 | 1.1 |
(C3+C5)/2C4 | 0.7 | 0.68 |
PS③/% | ||
2-MC7 | 40.6 | 30.0 |
3-MC7 | 36.8 | 36.1 |
4-MC7 | 8.7 | 7.9 |
2,2-DMC6 | 0.0 | 1.5 |
2,3-DMC6 | 0.2 | 2.6 |
2,4-DMC6 | 0.6 | 9.5 |
2,5-DMC6 | 1.6 | 10.3 |
裂化产物 | 11.5 | 2.1 |
项目 | Pt/C-SAPO-11-200 | Pt/T-SAPO-11-120 |
---|---|---|
DPt/% | 36.8 | 45.7 |
dPt/nm | 3.07 | 2.47 |
转化率/% | 64.3 | 75.7 |
iso-C7选择性/% | 97.0 | 95.1 |
iso-C7产率/% | 62.4 | 72.0 |
MB①产率/% | 61.1 | 68.9 |
DB②产率/% | 1.32 | 2.98 |
裂化产率③/% | 1.73 | 3.01 |
表2 常规(C-SAPO-11-200)和多级孔(T-SAPO-11-120)分子筛负载Pt催化剂上正辛烷的异构化结果[83]
项目 | Pt/C-SAPO-11-200 | Pt/T-SAPO-11-120 |
---|---|---|
DPt/% | 36.8 | 45.7 |
dPt/nm | 3.07 | 2.47 |
转化率/% | 64.3 | 75.7 |
iso-C7选择性/% | 97.0 | 95.1 |
iso-C7产率/% | 62.4 | 72.0 |
MB①产率/% | 61.1 | 68.9 |
DB②产率/% | 1.32 | 2.98 |
裂化产率③/% | 1.73 | 3.01 |
1 | WANG Y, LIU W, ZHANG W, et al. Comparison of n-dodecane hydroisomerization performance over Pt supported ZSM-48 and ZSM-22[J]. Catalysis Letters, 2021, 151(12): 3492-3500. |
2 | CHEN Z, LIU L, SHI F, et al. Hydroisomerization with a hierarchical SAPO-11 supported Ni catalyst: effect of DTAB content[J]. ChemistrySelect, 2021, 6(42): 11528-11536. |
3 | ZHAO X, LIU W, WANG J, et al. Interface mediated crystallization of plate-like SAPO-41 crystals to promote catalytic hydroisomerization[J]. Applied Catalysis A: General, 2020, 602: 117738. |
4 | GLOTOV A, VUTOLKINA A, ARTEMOVA M, et al. Micro-mesoporous MCM-41/ZSM-5 supported Pt and Pd catalysts for hydroisomerization of C8 aromatic fraction[J]. Applied Catalysis A: General, 2020, 603: 117764. |
5 | ZHANG Y, LIU D, LOU B, et al. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: effects of the MCM-41 incorporation with Y zeolite[J]. Fuel, 2018, 226: 204-212. |
6 | IBRAHIM M, JALIL A A, ZAKARIA W F W, et al. n-Hexane hydroisomerization over Zr-modified bicontinuous lamellar silica mordenite supported Pt as highly selective catalyst: molecular hydrogen generated protonic acid sites and optimization[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4019-4035. |
7 | FEDYNA M, ŚLIWA M, JAROSZEWSKA K, et al. Effect of zeolite amount on the properties of Pt/(AlSBA-15 + Beta zeolite) micro-mesoporous catalysts for the hydroisomerization of n-heptane[J]. Fuel, 2020, 280: 118607. |
8 | LOK B M, MESSINA C A, PATTON R L, et al. Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1984, 106(20): 6092-6093. |
9 | ZHANG S, CHEN S, DONG P, et al. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media[J]. Applied Catalysis A: General, 2007, 332(1): 46-55. |
10 | PARK K C, IHM S K. Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization[J]. Applied Catalysis A: General, 2000, 203(2): 201-209. |
11 | CAMPELO J M, LAFONT F, MARINAS J M. Hydroconversion of n-dodecane over Pt/SAPO-11 catalyst[J]. Applied Catalysis A: General, 1998, 170(1): 139-144. |
12 | GIRGIS M J, TSAO Y P. Impact of catalyst metal-acid balance in n-hexadecane hydroisomerization and hydrocracking[J]. Industrial & Engineering Chemistry Research, 1996, 35(2): 386-396. |
13 | MARTENS J A, SOUVERIJNS W, VERRELST W, et al. Selective isomerization of hydrocarbon chains on external surfaces of zeolite crystals[J]. Angewandte Chemie International Edition, 1995, 34(22): 2528-2530. |
14 | BLASCO T, CHICA A, CORMA A, et al. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties[J]. Journal of Catalysis, 2006, 242(1): 153-161. |
15 | RABAEV M, LANDAU M V, VIDRUK R, et al. Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation isomerization aromatization of vegetable oil[J]. Journal of Catalysis, 2015, 332: 164-176. |
16 | 陈治平, 王苗苗, 韦晓艺, 等. 复合分子筛在烃类异构化反应中的应用研究进展[J]. 化工进展, 2022, 41(5): 2404-2415. |
CHEN Zhiping, WANG Miaoiao, WEI Xiaoyi, et al. Application of composite molecular sieve in hydrocarbon isomerization[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2404-2415. | |
17 | XING G, LIU S, GUAN Q, et al. Investigation on hydroisomerization and hydrocracking of C15~C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catalysis Today, 2019, 330: 109-116. |
18 | CAMPELO J M, LAFONT F, MARINAS J M. Hydroisomerization and hydrocracking of n-hexane on Pt/SAPO-5 and Pt/SAPO-11 catalysts[J]. Zeolites, 1995, 15(2): 97-103. |
19 | HÖCHTL M, JENTYS A, VINEK H. Alkane conversion over Pd/SAPO molecular sieves: influence of acidity, metal concentration and structure[J]. Catalysis Today, 2001, 65(2): 171-177. |
20 | PARLITZ B, SCHREIER E, ZUBOWA H L, et al. Isomerization of n-heptane over Pd-loaded silico-alumino-phosphate molecular sieves[J]. Journal of Catalysis, 1995, 155(1): 1-11. |
21 | FAN Y, XIAO H, SHI G, et al. Alkylphosphonic acid- and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins[J]. Journal of Catalysis, 2012, 285(1): 251-259. |
22 | CHEN Z, XU J, FAN Y, et al. Reaction mechanism and kinetic modeling of hydroisomerization and hydroaromatization of fluid catalytic cracking naphtha[J]. Fuel Processing Technology, 2015, 130: 117-126. |
23 | SINHA A K, SIVASANKER S. Hydroisomerization of n-hexane over Pt-SAPO-11 and Pt-SAPO-31 molecular sieves[J]. Catalysis Today, 1999, 49(1): 293-302. |
24 | CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
25 | MARTENS J A, VANBUTSELE G, JACOBS P A, et al. Evidences for pore mouth and key–lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites[J]. Catalysis Today, 2001, 65(2): 111-116. |
26 | MÉRIAUDEAU P, TUAN V A, SAPALY G, et al. Pore size and crystal size effects on the selective hydroisomerisation of C8 paraffins over Pt-Pd/SAPO-11, Pt–Pd/SAPO-41 bifunctional catalysts[J]. Catalysis Today, 1999, 49(1): 285-292. |
27 | NGHIEM V T, SAPALY G, MÉRIAUDEAU P, et al. Monodimensional tubular medium pore molecular sieves for selective hydroisomerisation of long chain alkanes: n-octane reaction on ZSM and SAPO type catalysts[J]. Topics in Catalysis, 2000, 14(1): 131-138. |
28 | 杜艳泽, 秦波, 王会刚, 等. 多级孔分子筛在重油加氢裂化催化剂的应用进展[J]. 化工进展, 2021, 40(4): 1859-1867. |
DU Yanze, QIN Bo, WANG Huigang, et al. Development of hierarchical zeolites in hydrocracking catalysts of heavy oil[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1859-1867. | |
29 | Pérez-Ramírez J, Christensen C H, Egeblad K, et al. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews, 2008, 37(11): 2530-2542. |
30 | 肖寒, 于海斌, 刘红光, 等. 晶种硅烷化合成小粒径SAPO-11分子筛表征及其临氢异构化催化性能评价[J]. 石油炼制与化工, 2014, 45(1): 28-34. |
XIAO Han, YU Haibin, LIU Hongguang, et al. Characterization of small particle size SAPO-11 molecular sieves synthesized by seed silanization and evaluation of their catalytic performance in hydroisomerization[J]. Petroleum Processing and Petrochemicals, 2014, 45(1): 28-34. | |
31 | GUO L, BAO X, FAN Y, et al. Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes[J]. Journal of Catalysis, 2012, 294: 161-170. |
32 | 章芬, 刘艳, 孟祥举, 等. 用聚胍盐作为介孔模板剂合成多级孔SAPO-11 分子筛[C]//第18届全国分子筛学术大会, 上海, 2015. |
ZHANG Fen, LIU Yan, MENG Xiangju, et al. Multistage pore SAPO-11 molecular sieves were synthesized by using guanidine as mesoporous template[C]//The 18th National Molecular Sieve Academic Conference, Shanghai, 2015. | |
33 | 杨妮, 彭礼波, 欧阳仟, 等. 多级孔SAPO-11的制备及其临氢异构性能[J]. 石油化工, 2018, 47(12): 1318-1325. |
YANG Ni, PENG Libo, OUYANG Qian, et al. Synthesis of hierarchical SAPO-11 and catalytic performance thereof in hydroisomerization[J]. Petrochemical Technology, 2018, 47(12): 1318-1325. | |
34 | AGLIULLIN M R, FAIZULLIN A V, KHAZIPOVA A N, et al. Synthesis of fine-crystalline SAPO-11 zeolites and analysis of their physicochemical and catalytic properties[J]. Kinetics and Catalysis, 2020, 61(4): 654-662. |
35 | MONEGHINI M, KIKIC I, VOINOVICH D, et al. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution[J]. International Journal of Pharmaceutics, 2001, 222(1): 129-138. |
36 | CHANG C J, RANDOLPH A D. Solvent expansion and solute solubility predictions in gas-expanded liquids[J]. AIChE Journal, 1990, 36(6): 939-942. |
37 | WEN C, HAN S, XU J, et al. A novel route to synthesize SAPO-11 molecular sieves with a high external surface area in the presence of ethylene glycol and supercritical carbon dioxide for 1-octene hydroisomerization to dimethylhexanes[J]. Journal of Catalysis, 2017, 356: 100-110. |
38 | 罗小林, 陈亚芍, 常鹏梅, 等. 离子胶束诱导微波合成 SAPO-11 分子筛微球[J]. 物理化学学报, 2009(1): 137-144. |
LUO Xiaolin, CHEN Yashao, CHANG Pengmei, et al. Synthesis of SAPO-11 molecular sieve microspheres using a microwave technique and mediated by ionic micelles[J]. Acta Physico-Chimica Sinica, 2009(1): 137-144. | |
39 | MÉRIAUDEAU P, TUAN V A, LEFEBVRE F, et al. Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion[J]. Microporous and Mesoporous Materials, 1998, 22(1): 435-449. |
40 | HUANG X, WANG L, KONG L, et al. Improvement of catalytic properties of SAPO-11 molecular sieves synthesized in H2O-CTAB-butanol system[J]. Applied Catalysis A: General, 2003, 253(2): 461-467. |
41 | VALLEAU J P, IVKOV R, TORRIE G M. Colloid stability: the forces between charged surfaces in an electrolyte[J]. The Journal of Chemical Physics, 1991, 95(1): 520-532. |
42 | PARIA S, KHILAR K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface[J]. Advances in Colloid and Interface Science, 2004, 110(3): 75-95. |
43 | LYUBOVSKY M, PFEFFERLE L. Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion[J]. Applied Catalysis A: General, 1998, 173(1): 107-119. |
44 | SINHA A K, SAINKAR S, SIVASANKER S. An improved method for the synthesis of the silicoaluminophosphate molecular sieves, SAPO-5, SAPO-11 and SAPO-31[J]. Microporous and Mesoporous Materials, 1999, 31(3): 321-331. |
45 | LIU P, REN J, SUN Y. Hydro-treating and hydro-isomerisation of sunflower oil using Pt/SAPO-11: influence of templates in ultrasonic assisted with hydrothermal synthesis[J]. Chinese Journal of Catalysis, 2008, 29(4): 379-384. |
46 | ZHANG S, CHEN S, DONG P, et al. Progress in synthetic strategy and industrial preparation of aliphatic nitriles[J]. Catalysis Letters, 2007, 118(1/2): 109-117. |
47 | 刘艳惠, 任行涛, 杨光, 等. 不同晶化方式对SAPO-11分子筛的物化性质的影响[J]. 现代化工, 2014, 34(5): 100-102. |
LIU Yanhui, RENG Xingtao, Yang Guang, et al. Effect of different crystallization ways on physical and chemical properties of SAPO-11[J]. Modern Chemical Industry, 2014, 34(5): 100-102. | |
48 | GUO L, FAN Y, BAO X, et al. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization[J]. Journal of Catalysis, 2013, 301: 162-173. |
49 | 崔岩, 王晓化, 韩明汉, 等. 小晶粒Beta分子筛的微波合成[J]. 硅酸盐学报, 2019, 47(1): 48-54. |
CUI Yan, WANG Xiaohua, HAN Minghan, et al. Microwave synthesis of small grain Beta molecular sieves[J]. Journal of the Chinese Ceramic Society, 2019, 47(1): 48-54. | |
50 | BÉRTOLO R, SILVA J M, RIBEIRO M F, et al. Microwave synthesis of SAPO-11 materials for long chain n-alkanes hydroisomerization: effect of physical parameters and chemical gel composition[J]. Applied Catalysis A: General, 2017, 542: 28-37. |
51 | HAN L, LIU Y, SUBHAN F, et al. Particle effect of SAPO-11 promoter on isomerization reaction in FCC units[J]. Microporous and Mesoporous Materials, 2014, 194: 90-96. |
52 | 韩磊, 崔晓, 刘欣梅. SAPO-11分子筛的粒度调控[J]. 无机化学学报, 2013, 29(3): 565-570. |
HAN Lei, CUI Xiao, LIU Xinmei. Particle size regulation of SAPO-11 molecular sieve[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(3): 565-570. | |
53 | LIU Y, CUI X, HAN L, et al. Role of fluoride ions in synthesis and isomerization performance of superfine SAPO-11 zeolite[J]. Microporous and Mesoporous Materials, 2014, 198: 230-235. |
54 | LIU Y, ZHENG D, ZHAO L, et al. Effect of fluoride ions on the stability of SAPO-11 molecular sieves[J]. Microporous and Mesoporous Materials, 2020, 306: 110461. |
55 | GE L, YU G, CHEN X, et al. Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane[J]. New Journal of Chemistry, 2020, 44(7): 2996-3003. |
56 | LOPEZ S, INAYAT A, SCHWAB A, et al. Zeolitic materials with hierarchical porous structures[J]. Advanced Materials, 2011, 23(22/23): 2602-2615. |
57 | JACOBSEN C J H, MADSEN C, HOUZVICKA J, et al. Mesoporous zeolite single crystals[J]. Journal of the American Chemical Society, 2000, 122(29): 7116-7117. |
58 | CHRISTENSEN C H, SCHMIDT I, CARLSSON A, et al. Crystals in crystals nanocrystals within mesoporous zeolite single crystals[J]. Journal of the American Chemical Society, 2005, 127(22): 8098-8102. |
59 | 李浩, 王海彦, 孙娜, 等. 干凝胶法合成多级孔SAPO-11分子筛及其异构化性能[J]. 辽宁石油化工大学学报, 2018, 38(5): 9-13. |
LI Hao, WANG Haiyan, SUN Na, et al. Synthesis of SAPO-11 molecular sieves with multistage pores by dry gel method and its isomerization performance[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2018, 38(5): 9-13. | |
60 | SHENG N, XU H, LIU X, et al. Self-formation of hierarchical SAPO-11 molecular sieves as an efficient hydroisomerization support[J]. Catalysis Today, 2020, 350: 165-170. |
61 | 李文林, 郑金玉, 罗一斌, 等. 多级孔分子筛制备方法、机理和应用研究进展[J]. 石油学报(石油加工), 2016, 32(6): 1273-1286. |
LI Wenlin, ZHENG Jinyu, LUO Yibin, et al. Progress in preparation, mechanism and application of multistage molecular sieves[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(6): 1273-1286. | |
62 | EGEBLAD K, KUSTOVA M, KLITGAARD S K, et al. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media[J]. Microporous and Mesoporous Materials, 2007, 101(1-2): 214-223. |
63 | 张一成. 软模板法合成多级孔道沸石材料及其过程研究[D]. 上海: 华东理工大学, 2014. |
ZHANG Yicheng. Soft-templating synthesis of hierarchical zeolitic materials: mechanism and structure manipulation[D]. Shanghai: East China University of Science and Technology, 2014. | |
64 | 李雪. 多级孔SAPO-11沸石的合成及催化甘油加氢生成1,2-丙二醇的研究[D]. 南京: 东南大学, 2019. |
LI Xue. Synthesis of multistage pore SAPO-11 zeolite and catalytic hydrogenation of glycerol to 1, 2-propanediol[D]. Nanjing: Southeast University, 2019. | |
65 | KIM M Y, LEE K, CHOI M. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity[J]. Journal of Catalysis, 2014, 319: 232-238. |
66 | 孙娜, 王海彦, 李浩, 等. 剑麻纤维素合成多级孔 SAPO-11 分子筛及其临氢异构化性能[J]. 硅酸盐学报, 2018, 46(1): 108-115. |
SUN Na, WANG Haiyan, LI Hao, et al. Synthesis of hierarchical pore SAPO-11 molecular sieve by sisal fiber and its hydrogen isomerization performance[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 108-115. | |
67 | BÉRTOLO R, SILVA J M, RIBEIRO F, et al. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization[J]. Applied Catalysis A: General, 2014, 485: 230-237. |
68 | MA Z, LIU Z, SONG H, et al. Synthesis of hierarchical SAPO-11 for hydroisomerization reaction in refinery processes[J]. Applied Petrochemical Research, 2014, 4(4): 351-358. |
69 | CHOI M, CHO H S, SRIVASTAVA R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Materials, 2006, 5(9): 718-723. |
70 | WANG H, PINNAVAIA T J. MFI zeolite with small and uniform intracrystal mesopores[J]. Angewandte Chemie International Edition, 2006, 45(45): 7603-7606. |
71 | VALTCHEV V, SMAIHI M, FAUST A, et al. Biomineral-silica-induced zeolitization of equisetum arvense[J]. Angewandte Chemie International Edition, 2003, 42(24): 2782-2785. |
72 | 陈治平, 石发翔, 汪广恒, 等. 合成方法对合成多级孔 SAPO-11 分子筛的影响[J]. 硅酸盐学报, 2020, 48(4): 577-583. |
CHEN Zhiping, SHI Faxiang, WANG Guangheng, et al. Effect of synthetic methods on synthesis of hierarchical porous SAPO-11[J]. Journal of the Chinese Ceramic Society, 2020, 48(4): 577-583. | |
73 | XIAO F, WANG L, YIN C, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angewandte Chemie International Edition, 2006, 45(19): 3090-3093. |
74 | PARK D H, KIM S S, WANG H, et al. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores[J]. Angewandte Chemie International Edition, 2009, 48(41): 7645-7648. |
75 | 胡小夫, 马跃龙, 李作金, 等. 梯度孔SAPO-11分子筛的合成及Pt/SAPO-11催化剂的加氢异构化性能[J]. 石油学报(石油加工), 2016, 32(1): 35-41. |
HU Xiaofu, MA Yuelong, LI Zuojin, et al. Synthesis of SAPO-11 with gradient pore size and hydrogenation isomerization performance of Pt/SAPO-11 catalyst [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(1): 35-41. | |
76 | LIU Y, QU W, CHANG W, et al. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine[J]. Journal of Colloid and Interface Science, 2014, 418: 193-199. |
77 | ZHANG S, CHEN S, DONG P. Synthesis, characterization and hydroisomerization performance of SAPO-11 molecular sieves with caverns by polymer spheres[J]. Catalysis Letters, 2009, 136(1/2): 126-133. |
78 | TAO S, LI X, LYU G, et al. Highly mesoporous SAPO-11 molecular sieves with tunable acidity: facile synthesis, formation mechanism and catalytic performance in hydroisomerization of n-dodecane[J]. Catalysis Science & Technology, 2017, 7(23): 5775-5784. |
79 | LIU Y, LIU W, LYU Y, et al. Intra-crystalline mesoporous SAPO-11 prepared by a grinding synthesis method as FCC promoters to increase iso-paraffin of gasoline[J]. Microporous and Mesoporous Materials, 2020, 305: 110320. |
80 | LIU Y, XU L, LYU Y, et al. Regulating acidity, porosity, and morphology of hierarchical SAPO-11 zeolite by aging treatment[J]. Journal of Colloid and Interface Science, 2016, 479: 55-63. |
81 | JIN D, YE G, ZHENG J, et al. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks[J]. ACS Catalysis, 2017, 7(9): 5887-5902. |
82 | YU G, QIU M, WANG T, et al. Optimization of the pore structure and acidity of SAPO-11 for highly efficient hydroisomerization on the long-chain alkane[J]. Microporous and Mesoporous Materials, 2021, 320: 111076. |
83 | CHEN Z, DONG Y, JIANG S, et al. Low-temperature synthesis of hierarchical architectures of SAPO-11 zeolite as a good hydroisomerization support[J]. Journal of Materials Science, 2017, 52(8): 4460-4471. |
84 | CHEN Z, SONG W, ZHU S, et al. Synthesis of a multi-branched dandelion-like SAPO-11 by an in situ inoculating seed-induced-steam-assisted conversion method (SISAC) as a highly effective hydroisomerization support[J]. RSC Advances, 2017, 7(8): 4656-4666. |
85 | YUAN Z, CHENG Y, MA S, et al. Instant exactness synthesis and n-heptane hydroisomerization of high performance Ni/SAPO-11 catalyst[J]. Journal of Porous Materials, 2020, 27(5): 1455-1466. |
86 | SONG H, LIU Z, XING W, et al. Preparation of hierarchical SAPO-11 molecular sieve and its application for n-dodecane isomerization[J]. Applied Petrochemical Research, 2014, 4(4): 401-407. |
87 | JIN D, LI L, YE G, et al. Manipulating the mesostructure of silicoaluminophosphate SAPO-11 via tumbling-assisted, oriented assembly crystallization: a pathway to enhance selectivity in hydroisomerization[J]. Catalysis Science & Technology, 2018, 8(19): 5044-5061. |
88 | JIN D, LIU Z, ZHENG J, et al. Nonclassical from-shell-to-core growth of hierarchically organized SAPO-11 with enhanced catalytic performance in hydroisomerization of n-heptane[J]. RSC Advances, 2016, 6(39): 32523-32533. |
89 | ZHANG P, LIU H, YUE Y, et al. Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance[J]. Fuel Processing Technology, 2018, 179: 72-85. |
90 | YANG L, LI H, FU J Y, et al. Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes[J]. RSC Advances, 2019, 9(59): 34457-34464. |
91 | WEN C, WANG X, XU J, et al. Hierarchical SAPO-11 molecular sieve-based catalysts for enhancing the double-branched hydroisomerization of alkanes[J]. Fuel, 2019, 255: 115821. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |