化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4782-4789.DOI: 10.16085/j.issn.1000-6613.2021-2372
张铭1(), 高永康1, 纪德龙1, 刘福杰2, 朱文帅1, 李华明1
收稿日期:
2021-11-18
修回日期:
2022-01-28
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
张铭
作者简介:
张铭(1987—),男,教授,博士生导师,研究方向为化石能源清洁利用。E-mail: zm@ujs.edu.cn。
基金资助:
ZHANG Ming1(), GAO Yongkang1, JI Delong1, LIU Fujie2, ZHU Wenshuai1, LI Huaming1
Received:
2021-11-18
Revised:
2022-01-28
Online:
2022-09-25
Published:
2022-09-27
Contact:
ZHANG Ming
摘要:
多酸材料具备独特的酸性和氧化还原性能,在油品氧化脱硫领域得到广泛关注。本文综述了多酸材料在油品催化氧化脱硫领域的研究进展,详细叙述了多酸离子液体催化剂和以金属有机框架、氧化物、碳材料等为载体的负载型多酸催化剂的特点及其催化氧化燃油中多种有机硫化物的脱硫效果。将多酸与离子液体或其他载体结合后不仅能有效增强多酸的催化活性,而且可提高催化剂的热稳定性与重复利用性。本文对各类载体的特点及发展前景进行了详细比较,并对其研究现状进行了梳理。最后对多酸材料在氧化脱硫领域的发展方向提出了展望,指出了具有良好催化活性、循环性能及经济适用性强的多酸材料是未来的研究方向。
中图分类号:
张铭, 高永康, 纪德龙, 刘福杰, 朱文帅, 李华明. 多酸材料在燃油脱硫中的研究进展[J]. 化工进展, 2022, 41(9): 4782-4789.
ZHANG Ming, GAO Yongkang, JI Delong, LIU Fujie, ZHU Wenshuai, LI Huaming. Research progress of polyoxometalate materials for fuel oil desulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4782-4789.
序号 | 多酸(盐) | MOFs | 催化剂用量/mg | 反应时间/min | T/℃ | 反应底物 | 脱硫率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MIL-101(Al) | 12 | 120 | 70 | DBT | 100 | [ |
2 | 含镧稀土多酸 | MIL-101(Cr) | 40 | 120 | 60 | DBT | 98.2 | [ |
3 | 磷钼酸 | UIO-66(Zr) | 50 | 55 | 80 | DBT | 100 | [ |
4 | 磷钨酸 | UIO-66(Zr) | 50 | 25 | 25 | DBT | 99.7 | [ |
5 | 磷钨酸 | UiO-67(Zr) | 50 | 60 | 70 | DBT | 99.7 | [ |
6 | 磷钨酸 | MOF-808(Zr) | 12 | 5 | 40 | DBT | 100 | [ |
7 | 磷钨酸 | MOF-808(Zr) | 12 | 30 | 60 | DBT | 100 | [ |
8 | 磷钨酸 | ZIF-8(Zn) | 30 | 60 | 70 | DBT | 13 | [ |
9 | Mo132 | ZIF-8(Zn) | 150 | 480 | 80 | DBT | 95 | [ |
表1 不同POM/MOFs催化剂的氧化脱硫效果
序号 | 多酸(盐) | MOFs | 催化剂用量/mg | 反应时间/min | T/℃ | 反应底物 | 脱硫率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MIL-101(Al) | 12 | 120 | 70 | DBT | 100 | [ |
2 | 含镧稀土多酸 | MIL-101(Cr) | 40 | 120 | 60 | DBT | 98.2 | [ |
3 | 磷钼酸 | UIO-66(Zr) | 50 | 55 | 80 | DBT | 100 | [ |
4 | 磷钨酸 | UIO-66(Zr) | 50 | 25 | 25 | DBT | 99.7 | [ |
5 | 磷钨酸 | UiO-67(Zr) | 50 | 60 | 70 | DBT | 99.7 | [ |
6 | 磷钨酸 | MOF-808(Zr) | 12 | 5 | 40 | DBT | 100 | [ |
7 | 磷钨酸 | MOF-808(Zr) | 12 | 30 | 60 | DBT | 100 | [ |
8 | 磷钨酸 | ZIF-8(Zn) | 30 | 60 | 70 | DBT | 13 | [ |
9 | Mo132 | ZIF-8(Zn) | 150 | 480 | 80 | DBT | 95 | [ |
序号 | 多酸(盐) | 载体 | 反应时间 /min | T/℃ | 反应底物 | 脱硫率 /% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MOFs | 120 | 70 | DBT | 100 | [ |
2 | 磷钼酸 | MOFs | 55 | 80 | DBT | 100 | [ |
3 | 磷钨酸 | Al2O3 | 180 | 60 | DBT | 98.5 | [ |
4 | 磷钼酸 | SiO2 | 10 | 55 | DBT | 99.5 | [ |
5 | 磷钼钒酸 | SBA-15 | 75 | 60 | DBT | 98.5 | [ |
6 | 磷钨酸盐 | TiO2 | 40 | 60 | DBT | 99.70 | [ |
7 | 磷钼酸 | 活性炭 | 30 | 60 | DBT | 100 | [ |
8 | 七钼酸铵 | PIL | 60 | 50 | DBT | 100.00 | [ |
9 | 磷钨酸 | LDHs | 60 | 60 | DBT | 99.80 | [ |
10 | 磷钨酸 | Janus颗粒 | 60 | 60 | DBT | 99.86 | [ |
表2 负载型多酸催化剂氧化脱硫效果
序号 | 多酸(盐) | 载体 | 反应时间 /min | T/℃ | 反应底物 | 脱硫率 /% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 磷钨酸盐 | MOFs | 120 | 70 | DBT | 100 | [ |
2 | 磷钼酸 | MOFs | 55 | 80 | DBT | 100 | [ |
3 | 磷钨酸 | Al2O3 | 180 | 60 | DBT | 98.5 | [ |
4 | 磷钼酸 | SiO2 | 10 | 55 | DBT | 99.5 | [ |
5 | 磷钼钒酸 | SBA-15 | 75 | 60 | DBT | 98.5 | [ |
6 | 磷钨酸盐 | TiO2 | 40 | 60 | DBT | 99.70 | [ |
7 | 磷钼酸 | 活性炭 | 30 | 60 | DBT | 100 | [ |
8 | 七钼酸铵 | PIL | 60 | 50 | DBT | 100.00 | [ |
9 | 磷钨酸 | LDHs | 60 | 60 | DBT | 99.80 | [ |
10 | 磷钨酸 | Janus颗粒 | 60 | 60 | DBT | 99.86 | [ |
1 | 赵萍. 港口低碳环保发展的思路探索[J]. 低碳世界, 2016(4): 18-19. |
ZHAO Ping. Exploration on the development of low carbon environmental protection in ports[J]. Low Carbon World, 2016(4): 18-19. | |
2 | 陈婉. 港口要同步提升减排力和管理力[J]. 环境经济, 2020(20): 28-31. |
CHEN Wan. Ports should simultaneously improve their emission reduction and management[J]. Environmental Economy, 2020(20): 28-31. | |
3 | ZHANG Boyu, JIANG Zongxuan, LI Jun, et al. Catalytic oxidation of thiophene and its derivatives via dual activation for ultra-deep desulfurization of fuels[J]. Journal of Catalysis, 2012, 287: 5-12. |
4 | REN Xiaoling, LIU Zewei, DONG Lei, et al. Dynamic catalytic adsorptive desulfurization of real diesel over ultra-stable and low-cost silica gel-supported TiO2 [J]. AIChE Journal, 2018, 64(6): 2146-2159. |
5 | 王勇, 申海平, 任磊, 等. 燃料油氧化脱硫机理的研究进展[J]. 化工进展, 2019, 38(S1): 95-104. |
WANG Yong, SHEN Haiping, REN Lei, et al. Research progress of the oxidation desulfurization mechanism for fuel oil[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 95-104. | |
6 | HE Jing, WU Peiwen, LU Linjie, et al. Lattice-refined transition-metal oxides via ball milling for boosted catalytic oxidation performance[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36666-36675. |
7 | 王鹏, 李丽华, 吴限, 等. 杂多酸型光催化剂降解染料的研究进展[J]. 化学通报, 2019, 82(5): 415-423. |
WANG Peng, LI Lihua, WU Xian, et al. Research progress of polyoxometalate-based photocatalysts in the dyes photodegradation [J]. Chemistry, 2019, 82(5): 415-423. | |
8 | HUANG Yuqi, ZHANG Yuanbin, XING Huabin. Separation of light hydrocarbons with ionic liquids: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374-1382. |
9 | 吴沛文, 荀苏杭, 蒋伟, 等. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291. |
WU Peiwen, XUN Suhang, JIANG Wei, et al. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291. | |
10 | 刘小隽. 磷钨杂多酸离子液体在模拟汽油催化氧化脱硫中的应用[J]. 化工新型材料, 2016, 44(2): 226-228, 231. |
LIU Xiaojun. Oxidative desulfurization of model oil catalyzed by tungstophoric ionic liquid[J]. New Chemical Materials, 2016, 44(2): 226-228, 231. | |
11 | 张薇, 丁永萍, 张宇, 等. 杂多酸离子液体催化燃油萃取氧化脱硫性能研究[J]. 化学通报, 2015, 78(4): 330-336. |
ZHANG Wei, DING Yongping, ZHANG Yu, et al. Extraction and oxidative desulfurization of fuels catalyzed by polyoxometalate-based ionic liquids[J]. Chemistry, 2015, 78(4): 330-336. | |
12 | JIANG Wei, ZHENG Dan, XUN Suhang, et al. Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels[J]. Fuel, 2017, 190: 1-9. |
13 | CRAVEN M, XIAO D, KUNSTMANN-OLSEN C, et al. Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica[J]. Applied Catalysis B: Environmental, 2018, 231: 82-91. |
14 | RAMESH KUMAR C, GATLA S, MATHON O, et al. The role of Niobia location on the acidic and catalytic functionalities of heteropoly tungstate[J]. Applied Catalysis A: General, 2015, 502: 297-304. |
15 | CHEN Tian, FAN Changhui. One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol[J]. Journal of Porous Materials, 2013, 20(5): 1225-1230. |
16 | GU Huimin, LANG Junyu, MA Yuli, et al. Phosphotungstic acid binding in situ to K4Nb6O17 for the effective adsorption-photocatalytic removal of tetracycline[J]. Journal of Nanoparticle Research, 2018, 20(5): 1-16. |
17 | 包德才, 窦立超, 任冬梅, 等. 多金属氧酸盐催化氧化脱硫研究进展[J]. 渤海大学学报(自然科学版), 2017, 38(3): 211-217. |
BAO Decai, DOU Lichao, REN Dongmei, et al. Review in catalytic oxidation desulfurization by polyoxometalates[J]. Journal of Bohai University (Natural Science Edition), 2017, 38(3): 211-217. | |
18 | CHEN Y, HONG S, FU C W, et al. Investigation of the mesoporous metal-organic framework as a new platform to study the transport phenomena of biomolecules[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10874-10881. |
19 | ZHANG Jian, YAO Shuo, LIU Shuang, et al. Enhancement of gas sorption and separation performance via ligand functionalization within highly stable zirconium-based metal-organic frameworks[J]. Crystal Growth & Design, 2017, 17(4): 2131-2139. |
20 | WANG H, WANG Q N, TEAT S J, et al. Synthesis, structure, and selective gas adsorption of a single-crystalline zirconium based microporous metal-organic framework[J]. Crystal Growth & Design, 2017, 17(4): 2034-2040. |
21 | GRANADEIRO C M, NOGUEIRA L S, JULIÃO D, et al. Influence of a porous MOF support on the catalytic performance of Eu-polyoxometalate based materials: desulfurization of a model diesel[J]. Catalysis Science & Technology, 2016, 6(5): 1515-1522. |
22 | ZHANG Xiaomin, ZHANG Zihe, ZHANG Bohai, et al. Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization[J]. Applied Catalysis B: Environmental, 2019, 256: 117804. |
23 | SAMANIYAN M, MIRZAEI M, KHAJAVIAN R, et al. Heterogeneous catalysis by polyoxometalates in metal-organic frameworks[J]. ACS Catalysis, 2019, 9(11): 10174-10191. |
24 | LU Yukun, YUE Changle, LIU Boxu, et al. The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2021, 311: 110694. |
25 | YE Gan, HU Liangliang, GU Yulong, et al. Synthesis of polyoxometalate encapsulated in UiO-66(Zr) with hierarchical porosity and double active sites for oxidation desulfurization of fuel oil at room temperature[J]. Journal of Materials Chemistry A, 2020, 8(37): 19396-19404. |
26 | PENG Yunlei, LIU Jingyi, ZHANG Haifeng, et al. A size-matched POM@MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization[J]. Inorganic Chemistry Frontiers, 2018, 5(7): 1563-1569. |
27 | ZHENG Heqi, ZENG Yongnian, CHEN Jin, et al. Zr-based metal-organic frameworks with intrinsic peroxidase-like activity for ultradeep oxidative desulfurization: mechanism of H2O2 decomposition[J]. Inorganic Chemistry, 2019, 58(10): 6983-6992. |
28 | LIN Z J, ZHENG H Q, CHEN J, et al. Encapsulation of phosphotungstic acid into metal-organic frameworks with tunable window sizes: screening of PTA@MOF catalysts for efficient oxidative desulfurization[J]. Inorganic Chemistry, 2018, 57(20): 13009-13019. |
29 | WANG Xusheng, LI Lan, LIANG Jun, et al. Back cover: boosting oxidative desulfurization of model and real gasoline over phosphotungstic acid encapsulated in metal-organic frameworks: the window size matters[J]. ChemCatChem, 2017, 9(6): 1145. |
30 | GHAHRAMANINEZHAD M, PAKDEL F, NIKNAM SHAHRAK M. Boosting oxidative desulfurization of model fuel by POM-grafting ZIF-8 as a novel and efficient catalyst[J]. Polyhedron, 2019, 170: 364-372. |
31 | GARCÍA-GUTIÉRREZ J L, FUENTES G A, HERNÁNDEZ-TERÁN M E, et al. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3 [J]. Applied Catalysis A: General, 2006, 305(1):15-20. |
32 | LI Ang, LEI Jiaheng, DU Yue, et al. Oxidative desulfurization of DBT with H2O2 over 3DOM H3PW12O40/Al2O3 catalyst[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2020, 35(4): 671-676. |
33 | 韩海波, 王有和, 李康, 等. MOR/SBA-15复合分子筛的合成、表征及其催化性能评价[J]. 无机化学学报, 2018, 34(8): 1477-1482. |
HAN Haibo, WANG Youhe, LI Kang, et al. Synthesis, characterization and catalytic performance of MOR/SBA-15 composite zeolite[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(8): 1477-1482. | |
34 | 余响林, 刘佳俊, 王哲, 等. 洋葱状介孔碳/硅复合材料的合成及其性能研究[J]. 化工新型材料, 2019, 47(10): 157-162. |
YU Xianglin, LIU Jiajun, WANG Zhe, et al. Research on synthesis and application of onion-like mesoporous carbon/silica composite material[J]. New Chemical Materials, 2019, 47(10): 157-162. | |
35 | 田永胜, 王光辉, 龙娟, 等. 功能化含磷钼酸介孔硅材料的制备及其在深度氧化脱硫中的应用[J]. 催化学报, 2016, 37(12): 2098-2105. |
TIAN Yongsheng, WANG Guanghui, LONG Juan, et al. Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by phosphomolybdic acid supported on silica[J]. Chinese Journal of Catalysis, 2016, 37(12): 2098-2105. | |
36 | CHAMACK M, MAHJOUB A R, AGHAYAN H. Catalytic performance of vanadium-substituted molybdophosphoric acid supported on zirconium modified mesoporous silica in oxidative desulfurization[J]. Chemical Engineering Research and Design, 2015, 94: 565-572. |
37 | 孟戎茜, 李巧玲, 晋日亚. TiO2纳米结构作为载体在药物缓控释传递系统的应用[J]. 化工进展, 2018, 37(10): 3980-3987. |
MENG Rongqian, LI Qiaoling, JIN Riya. Progress of titanium dioxide nanostructures as carriers in sustained and controlled drug-release delivery system[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3980-3987. | |
38 | 高洪成, 王秀艳, 张晓飞, 等. PW(11)M(M=Cu、Co)@TiO2多相催化剂的制备及氧化脱硫性能[J]. 分子催化, 2019, 33(5): 438-446. |
GAO Hongcheng, WANG Xiuyan, ZHANG Xiaofei, et al. Preparation of PW(11)M(M= Cu,Co)@TiO2 heterogeneous catalysts and oxidative desulfurization performance[J]. Journal of Molecular Catalysis (China), 2019, 33(5): 438-446. | |
39 | 倪军, 罗小芳, 詹勇, 等. 新型碳材料在催化领域中的应用及进展[J]. 分子催化, 2016, 30(3): 282-296. |
NI Jun, LUO Xiaofang, ZHAN Yong, et al. Application and progress of the novel activated carbon in the field of catalysis[J]. Journal of Molecular Catalysis (China), 2016, 30(3): 282-296. | |
40 | KULIKOV S M, TIMOFEEVA M N, KOZHEVNIKOV I V, et al. Adsorption of the heteropolyacid H4SiW12O40 by porous substrates[J]. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1989, 38(4): 687-691. |
41 | IZUMI Y, URABE K. Catalysis of heteropoly acids entrapped in activated carbon[J]. Chemistry Letters, 1981, 10(5): 663-666. |
42 | 胡立鹃, 吴峰, 彭善枝, 等. 生物质活性炭的制备及应用进展[J]. 化学通报, 2016, 79(3): 205-212. |
HU Lijuan, WU Feng, PENG Shanzhi, et al. Progress in preparation and utilization of biomass-based activated carbons[J]. Chemistry, 2016, 79(3): 205-212. | |
43 | GHUBAYRA R, NUTTALL C, HODGKISS S, et al. Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids[J]. Applied Catalysis B: Environmental, 2019, 253: 309-316. |
44 | CHENG Q F, BAO J W, PARK J, et al. High mechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials, 2009, 19(20): 3219-3225. |
45 | PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001, 39(4): 507-514. |
46 | GAO Yan, GAO Ruimin, ZHANG Gai, et al. Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes[J]. Fuel, 2018, 224: 261-270. |
47 | 康美荣, 金福祥, 李臻, 等. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293. |
KANG Meirong, JIN Fuxiang, LI Zhen, et al. Research and application of supported ionic liquids[J]. Progress in Chemistry, 2020, 32(9): 1274-1293. | |
48 | 胡亚一, 陈嘉磊, 刘琦, 等. 杂多酸离子液体负载氨基化Fe3O4磁性复合材料的制备及其超声辅助催化脱硫性能[J]. 复合材料学报, 2020, 37(3): 650-661. |
HU Yayi, CHEN Jialei, LIU Qi, et al. Preparation of heteropoly acid ionic liquids supported amino-functionalized Fe3O4 magnetic composite and its catalytic property for ultrasound assisted desulfurization[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 650-661. | |
49 | 吴岳峰, 曲永芳, 李大欢, 等. 聚离子液体载MoO2/Ag催化分子氧氧化苯乙烯的研究[J]. 化工学报, 2020, 71(11): 4990-4998. |
WU Yuefeng, QU Yongfang, LI Dahuan, et al. Study on oxidation of styrene with molecular oxygen catalyzed by MoO2/Ag on polyionic liquid [J]. CIESC Journal, 2020, 71(11): 4990-4998. | |
50 | YANG Huawei, JIANG Bin, SUN Yongli, et al. Polymeric cation and isopolyanion ionic self-assembly: novel thin-layer mesoporous catalyst for oxidative desulfurization[J]. Chemical Engineering Journal, 2017, 317: 32-41. |
51 | 任锦, 梁良, 张亚平, 等. 层状双氢氧化物的可控合成及功能化研究进展[J]. 化工进展, 2018, 37(7): 2694-2703. |
REN Jin, LIANG Liang, ZHANG Yaping, et al. Progress in controllable synthesis and functionalization of layered double hydroxides[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2694-2703. | |
52 | YUN S K, PINNAVAIA T J. Layered double hydroxides intercalated by polyoxometalate anions with Keggin (α-H2W12O40 6-), Dawson (α-P2W18O62 6-), and Finke (Co4(H2O)2(PW9O34)2 10-) structures[J]. Inorganic Chemistry, 1996, 35(23): 6853-6860. |
53 | HUANG Pengcheng, LIU Aili, KANG Lihua, et al. Heteropoly acid supported on sodium dodecyl benzene sulfonate modified layered double hydroxides as catalysts for oxidative desulfurization[J]. New Journal of Chemistry, 2018, 42(15): 12830-12837. |
54 | 陈希, 马德胜, 田茂章, 等. 基于Janus SiO2/PS纳米颗粒的乳液相行为及流变性[J]. 新疆石油地质, 2018, 39(3): 326-332, 371. |
CHEN Xi, MA Desheng, TIAN Maozhang, et al. Phase behavior and rheological properties of emulsions based on Janus SiO2/PS nano-particles[J]. Xinjiang Petroleum Geology, 2018, 39(3): 326-332, 371. | |
55 | DOU Shuaiyong, WANG Rui. The C-Si Janus nanoparticles with supported phosphotungstic active component for pickering emulsion desulfurization of fuel oil without stirring[J]. Chemical Engineering Journal, 2019, 369: 64-76. |
[1] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[2] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[3] | 郭晓宇, 李冬晨, 赵炜, 杜朕屹, 李晓良. Au-Pd/MnO2催化剂的制备及其苯甲醇氧化性能[J]. 化工进展, 2023, 42(10): 5223-5231. |
[4] | 朱飞飞, 马磊, 龙慧敏. PdxSy材料的制备及其在催化领域的研究进展[J]. 化工进展, 2022, 41(2): 740-749. |
[5] | 高天, 张伊黎, 熊卓, 赵永椿, 张军营. 改性氧化钛光催化氧化单质汞性能及其影响因素研究进展[J]. 化工进展, 2022, 41(2): 690-700. |
[6] | 聂紫萌, 杨点, 熊玉路, 李英杰, 田森林, 宁平. 电解锰渣浆液烟气脱硫性能及机制[J]. 化工进展, 2022, 41(2): 1063-1072. |
[7] | 翟重渊, 赵丹荻, 何亚鹏, 黄惠, 陈步明, 郭忠诚. 掺硼金刚石阳极电催化降解新兴抗生素类污染物研究进展[J]. 化工进展, 2022, 41(12): 6615-6626. |
[8] | 王吉坤, 李阳, 陈贵锋, 刘敏, 寇丽红, 王琦, 何毅聪. 臭氧催化氧化降解煤化工高盐废水有机物的机理[J]. 化工进展, 2022, 41(1): 493-502. |
[9] | 张轩, 宋小三, 赵珀, 董元华, 刘云. 高级氧化技术处理1,4-二烷污染研究进展[J]. 化工进展, 2021, 40(S2): 380-388. |
[10] | 苏碧云, 冉良涛, 胡雅和, 张翱, 韩巧巧, 武晋娣, 刘伊婷, 孟祖超. 分子氧化及光电催化氧化对石油Pickering乳液的破乳研究进展[J]. 化工进展, 2021, 40(7): 3995-4002. |
[11] | 孙浩, 何雪英, 胡一超, 刘哲艺, 张瑛洁. 铁锰氧化膜同步除微污染地表水铁锰氨氮研究进展[J]. 化工进展, 2021, 40(3): 1634-1642. |
[12] | 黄建雄, 郭英明, 杨靖, 许伟, 王旭, 张瑞峰. 铁锰复合氧化膜对水中双酚A的去除及影响因素[J]. 化工进展, 2021, 40(3): 1551-1557. |
[13] | 张巍, 汤云灏, 尹艳山, 龚蔚成, 宋健, 马英, 阮敏, 徐慧芳, 陈冬林. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展, 2021, 40(3): 1425-1437. |
[14] | 李章良, 赵晓旭, 黄建辉, 王侯琼, 李萍. 微波诱导Fe3O4/AC催化氧化降解邻苯二甲酸二甲酯[J]. 化工进展, 2021, 40(2): 870-880. |
[15] | 李广柱, 曾尚景, 孙述海, 许开成, 边德军. 生物炭负载铁氧化物复合材料的制备及在水处理中的应用[J]. 化工进展, 2021, 40(2): 917-931. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |