化工进展 ›› 2022, Vol. 41 ›› Issue (2): 740-749.DOI: 10.16085/j.issn.1000-6613.2021-0444
收稿日期:
2021-03-05
修回日期:
2021-05-22
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
马磊
作者简介:
朱飞飞(1994—),女,硕士研究生,研究方向为甲烷低温催化氧化。E-mail:基金资助:
ZHU Feifei(), MA Lei(), LONG Huimin
Received:
2021-03-05
Revised:
2021-05-22
Online:
2022-02-05
Published:
2022-02-23
Contact:
MA Lei
摘要:
在催化领域,PdxSy多年来一直被认为是金属钯中毒形成的不良产物而不受重视。但是近年来,PdxSy材料被发现在催化加氢、催化氧化、电催化以及可见光催化制氢方面表现出独特的催化性能。本文比较了PdxSy材料的传统制备方法和绿色创新合成技术,综述了PdxSy材料作为催化剂在催化加氢、催化氧化、电催化以及可见光催化制氢方面的研究工作。比较发现,PdxSy材料的传统制备方法存在毒害大、三废多、周期长等缺点,这些缺点在很大程度上限制了该材料的发展前景,需要在制备方法上进行更深入的创新研究。同时,PdxSy材料在多个催化领域,尤其是在可见光催化制氢方面的优异性能,使其在催化材料领域备受关注。
中图分类号:
朱飞飞, 马磊, 龙慧敏. PdxSy材料的制备及其在催化领域的研究进展[J]. 化工进展, 2022, 41(2): 740-749.
ZHU Feifei, MA Lei, LONG Huimin. Research progresses on the preparation and application of PdxSy catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 740-749.
63 | LIU Yanan, MCCUE Alan J, FENG Junting, et al. Evolution of palladium sulfide phases during thermal treatments and consequences for acetylene hydrogenation[J]. Journal of Catalysis, 2018, 364: 204-215. |
64 | LIU Yanan, LI Yinwen, ANDERSON James A, et al. Comparison of Pd and Pd4S based catalysts for partial hydrogenation of external and internal butynes[J]. Journal of Catalysis, 2020, 383: 51-59. |
65 | ALBANI Davide, SHAHROKHI Masoud, CHEN Zupeng, et al. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation[J]. Nature Communications, 2018, 9(1): 2634. |
66 | 余倩倩, 马磊. 含硫气氛下催化剂PdxSy/SiO2催化甲烷低温燃烧反应[J]. 化工生产与技术, 2015, 22(2): 12-15. |
YU Qianqian, MA Lei. Low temperature combustion of methane over PdxSy/SiO2 catalyst in sulfur atmosphere[J]. Chemical Production and Technology, 2015, 22(2): 12-15. | |
1 | HUANG Qishun, DANG Feng, ZHU Haitao, et al. A hierarchical porous carbon supported Pd@Pd4S heterostructure as an efficient catalytic material positive electrode for Li-O2 batteries[J]. Journal of Power Sources, 2020, 451: 227738. |
2 | LIU Yongchang, LI Yang, KANG Hongyan, et al. Design, synthesis, and energy-related applications of metal sulfides[J]. Materials Horizons, 2016, 3(5): 402-421. |
3 | XU Wei, NI Jun, ZHANG Qunfeng, et al. Tailoring supported palladium sulfide catalysts through H2-assisted sulfidation with H2S[J]. Journal of Materials Chemistry A, 2013, 1(41): 12811. |
4 | BARAWI M, FERRER I J, ARES J R, et al. Hydrogen evolution using palladium sulfide (PdS) nanocorals as photoanodes in aqueous solution[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 20544-20549. |
5 | ZUBKOV A, FUJINO T, SATO N, et al. Enthalpies of formation of the palladium sulphides[J]. The Journal of Chemical Thermodynamics, 1998, 30(5): 571-581. |
6 | MORREALE Bryan D, HOWARD Bret H, IYOHA Osemwengie, et al. Experimental and computational prediction of the hydrogen transport properties of Pd4S[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6313-6319. |
7 | MUNDSCHAU M V, XIE X, EVENSON C R, et al. Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration[J]. Catalysis Today, 2006, 118(1/2): 12-23. |
8 | SCHULTZ Matthias, Egon MATIJEVIĆ. Preparation and properties of nanosized PdS dispersions for electrolytic plating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 131(1): 173-179. |
9 | ZHANG Qunfeng, FENG Feng, SU Chang, et al. Preparation of supported core-shell structured Pd@PdxSy/C catalysts for use in selective reductive alkylation reaction[J]. RSC Advances, 2015, 5(81): 66278-66285. |
10 | FERRER I J, DÍAZ-CHAO P, PASCUAL A, et al. An investigation on palladium sulphide (PdS) thin films as a photovoltaic material[J]. Thin Solid Films, 2007, 515(15): 5783-5786. |
11 | SINGH Ved Vati, KUMAR Umesh, TRIPATHI Sandeep Nath, et al. Shape dependent catalytic activity of nanoflowers and nanospheres of Pd4S generated via one pot synthesis and grafted on graphene oxide for suzuki coupling[J]. Dalton Transactions, 2014, 43(33): 12555. |
12 | 高虎虎, 莫尊理, 牛小慧, 等. 部分金属硫化物光催化剂的研究进展[J]. 化工新型材料, 2017, 45(8): 41-43. |
GAO Huhu, MO Zunli, NIU Xiaohui, et al. Progress in the study of metal sulifide photocatalyst[J]. New Chemical Materials, 2017, 45(8): 41-43. | |
13 | GROENVOLD Fredrik, WESTRUM Edgar F, RADEBAUGH Ray. Tetrapalladium sulfide and tetrapalladium selenide: heat capacities and thermodynamic properties from 5 to 350.deg.K[J]. Journal of Chemical & Engineering Data, 1969, 14(2): 205-207. |
14 | BHATT R, BHATTACHARYA S, BASU R, et al. Growth of Pd4S, PdS and PdS2 films by controlled sulfurization of sputtered Pd on native oxide of Si[J]. Thin Solid Films, 2013, 539: 41-46. |
15 | DU C, LI P, YANG F, et al. Monodisperse palladium sulfide as efficient electrocatalyst for oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 753-761. |
16 | MENEGAZZO Federica, CANTON Patrizia, PINNA Francesco, et al. Bimetallic Pd-Au catalysts for benzaldehyde hydrogenation: effects of preparation and of sulfur poisoning[J]. Catalysis Communications, 2008, 9(14): 2353-2356. |
17 | 徐伟, 张群峰, 李小年. 炭载硫化钯催化剂的水相合成及其催化性能研究[J]. 高校化学工程学报, 2014, 28(6): 1269-1274. |
XU Wei, ZHANG Qunfeng, LI Xiaonian. Aqueous phase synthesis of activated carbon supported palladium sulfides and their catalytic performance[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(6): 1269-1274. | |
18 | MA Lei, YUAN Shiyan, JIANG Taotao, et al. Pd4S/SiO2: a sulfur-tolerant palladium catalyst for catalytic complete oxidation of methane[J]. Catalysts, 2019, 9(5): 410. |
19 | ZHANG Qunfeng, WU Jiachun, SU Chang, et al. Preparation, structural characterization of a novel egg-shell palladium sulfide catalyst and its application in selective reductive alkylation reaction[J]. Chinese Chemical Letters, 2012, 23(10): 1111-1114. |
20 | 徐伟, 李小年. 硫化钯催化剂的合成及其应用研究进展[J]. 工业催化, 2013, 21(3): 1-8. |
XU Wei, LI Xiaonian. Research development in synthesis and application of palladium sulfide catalysts[J]. Industrial Catalysis, 2013, 21(3): 1-8. | |
21 | O’BRIEN P, WATERS J. Deposition of Ni and Pd sulfide thin films via aerosol-assisted CVD[J]. Chemical Vapor Deposition, 2006, 12(10): 620-626. |
22 | Margareth N EDE, UGWOKE Dennis U, IGHODALO Kester O, et al. Structural and optical properties of metallic doped palladium sulfide thin films[J]. Optik, 2019, 179: 914-918. |
23 | RADHA Boya, KULKARNI Giridhar U. Patterned synthesis of Pd4S: chemically robust electrodes and conducting etch masks[J]. Advanced Functional Materials, 2010, 20(6): 879-884. |
24 | XU You, REN Kaili, REN Tianlun, et al. Phosphorus-triggered modification of the electronic structure and surface properties of Pd4S nanowires for robust hydrogen evolution electrocatalysis[J]. Journal of Materials Chemistry A, 2020, 8(38): 19873-19878. |
25 | NANDAN R, NANDA K K. Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst[J]. Nanoscale, 2017, 9(34): 12628-12636. |
26 | DEBE Mark K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. |
27 | CHENG F, CHEN J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172-2192. |
28 | GRANDE L, PAILLARD E, HASSOUN J, et al. The lithium/air battery: still an emerging system or a practical reality?[J]. Advanced Materials, 2015, 27(5): 784-800. |
29 | TANG C, WANG H F, CHEN X, et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis[J]. Advanced Materials, 2016, 28(32): 6845-6851. |
30 | NIE Y, LI L, WEI Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44(8): 2168-2201. |
31 | WANG Y J, ZHAO N, FANG B, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity[J]. Chemical Reviews, 2015, 115(9): 3433-3467. |
32 | ZHOU M, WANG H L, GUO S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews, 2016, 45(5): 1273-1307. |
33 | DAI L, XUE Y, QU L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11): 4823-4892. |
34 | JIANG J, LI Y, LIU J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials, 2012, 24(38): 5166-5180. |
35 | RUI Xianhong, TAN Huiteng, YAN Qingyu. Nanostructured metal sulfides for energy storage[J]. Nanoscale, 2014, 6(17): 9889. |
36 | BACH L G, THI M L N, BUI Q B, et al. Palladium sulfide nanoparticles attached MoS2/nitrogen-doped graphene heterostructures for efficient oxygen reduction reaction[J]. Synthetic Metals, 2019, 254: 172-179. |
37 | LIU Xiaomeng, HUANG Qishun, WANG Jun, et al. In-situ deposition of Pd/Pd4S heterostructure on hollow carbon spheres as efficient electrocatalysts for rechargeable Li-O2 batteries[J]. Chinese Chemical Letters, 2020, 32(6). |
38 | HONG Xiaoping, KIM Jonghwan, SHI Sufei, et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotechnology, 2014, 9(9): 682-686. |
39 | LIU Lili, WANG Jun, HOU Yuyang, et al. Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries[J]. Small, 2016, 12(5): 602-611. |
40 | ZHOU P, YU J, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials, 2014, 26(29): 4920-4935. |
41 | WANG Hua, FENG Hongbin, LI Jinghong. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage[J]. Small, 2014, 10(11): 2165-2181. |
42 | YANG Zhengmei, HUANG Guifang, HUANG Weiqing, et al. Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications[J]. Journal of Materials Chemistry A, 2014, 2(6): 1750-1756. |
43 | MA Y, WANG X, JIA Y, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19): 9987-10043. |
44 | POURETEDAL Hamid Reza, BASATI Sara. Characterization and photocatalytic activity of ZnO,ZnS,CdO,CdS nanoparticles in mesoporous SBA-15[J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2015, 34: 1. |
45 | BARPUZARY Dipankar, KHAN Ziyauddin, VINOTHKUMAR Natarajan, et al. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation[J]. The Journal of Physical Chemistry C, 2011, 116(1): 150-156. |
46 | AFZAAL Mohammad, MALIK Mohammad Azad, Paul O’BRIEN. Chemical routes to chalcogenide materials as thin films or particles with critical dimensions with the order of nanometres[J]. Journal of Materials Chemistry, 2010, 20(20): 4031. |
47 | LIU Shan, WANG Xitao, WANG Kang, et al. ZnO/ZnS-PdS core/shell nanorods: synthesis, characterization and application for photocatalytic hydrogen production from a glycerol/water solution[J]. Applied Surface Science, 2013, 283: 732-739. |
48 | FOLMER J C W, TURNER J A, PARKINSON B A. Photoelectrochemical characterization of several semiconducting compounds of palladium with sulfur and/or phosphorus[J]. Journal of Solid State Chemistry, 1987, 68(1): 28-37. |
49 | YAN Hongjian, YANG Jinhui, MA Guijun, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis, 2009, 266(2): 165-168. |
50 | YANG Jinhui, YAN Hongjian, WANG Xiuli, et al. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production[J]. Journal of Catalysis, 2012, 290: 151-157. |
51 | ZHANG Shu, CHEN Qingyun, JING Dengwei, et al. Visible photoactivity and antiphotocorrosion performance of PdS-CdS photocatalysts modified by polyaniline[J]. International Journal of Hydrogen Energy, 2012, 37(1): 791-796. |
52 | MENG Jianling, YU Zhengmin, LI Yang, et al. PdS-modified CdS/NiS composite as an efficient photocatalyst for H2 evolution in visible light[J]. Catalysis Today, 2014, 225: 136-141. |
53 | WANG Yidi, LI Bowen, LI Guanshu, et al. A modified Z-scheme Er3+:YAlO3@(PdS/BiPO4)/(Au/rGO)/CdS photocatalyst for enhanced solar-light photocatalytic conversion of nitrite[J]. Chemical Engineering Journal, 2017, 322: 556-570. |
54 | SONG Yahui, WEI Shengnan, RONG Yang, et al. Enhanced visible-light photocatalytic hydrogen evolution activity of Er3+:Y3Al5O12/PdS-ZnS by conduction band co-catalysts (MoO2, MoS2 and MoSe2)[J]. International Journal of Hydrogen Energy, 2016, 41(30): 12826-12835. |
55 | WANG Fang, SU Yanhong, MIN Shixiong, et al. Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light[J]. Journal of Solid State Chemistry, 2018, 260: 23-30. |
56 | LI Yi, YU Shan, DORONKIN Dmitry E, et al. Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S[J]. Journal of Catalysis, 2019, 373: 48-57. |
57 | XIANG Xianmei, CHOU Lingjun, LI Xinheng. Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability[J]. Chinese Journal of Catalysis, 2018, 39(3): 407-412. |
58 | BACHILLER-BAEZA B, PEÑA-BAHAMONDE J, CASTILLEJOS-LÓPEZ E, et al. Improved performance of carbon nanofiber-supported palladium particles in the selective 1,3-butadiene hydrogenation: influence of carbon nanostructure, support functionalization treatment and metal precursor[J]. Catalysis Today, 2015, 249: 63-71. |
59 | Belén BACHILLER-BAEZA, Ana IGLESIAS-JUEZ, Eva CASTILLEJOS-LÓPEZ, et al. Detecting the genesis of a high-performance carbon-supported Pd sulfide nanophase and its evolution in the hydrogenation of butadiene[J]. ACS Catalysis, 2015, 5(9): 5235-5241. |
60 | ZHANG Qunfeng, XU Wei, LI Xiaonian, et al. Catalytic hydrogenation of sulfur-containing nitrobenzene over Pd/C catalysts: in situ sulfidation of Pd/C for the preparation of PdxSy catalysts[J]. Applied Catalysis A: General, 2015, 497: 17-21. |
61 | MCCUE Alan J, Antonio GUERRERO-RUIZ, Inmaculada RODRÍGUEZ-RAMOS, et al. Palladium sulphide: a highly selective catalyst for the gas phase hydrogenation of alkynes to alkenes[J]. Journal of Catalysis, 2016, 340: 10-16. |
62 | MCCUE Alan J, Antonio GUERRERO-RUIZ, Carolina RAMIREZ-BARRIA, et al. Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst[J]. Journal of Catalysis, 2017, 355: 40-52. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[13] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[14] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[15] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |