化工进展 ›› 2022, Vol. 41 ›› Issue (2): 750-758.DOI: 10.16085/j.issn.1000-6613.2021-0631
收稿日期:
2021-03-29
修回日期:
2021-06-29
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
郑庆庆
Received:
2021-03-29
Revised:
2021-06-29
Online:
2022-02-05
Published:
2022-02-23
Contact:
ZHENG Qingqing
摘要:
制备出硅铝比相近但介孔体积逐渐增加的超稳Y(USY)沸石,进而制备成微球状催化剂。本文在固定流化床装置上,考察了两种植物油的催化裂化性能。小桐子油的评价结果表明,催化剂中USY沸石的介孔体积越大,汽柴油收率越高;汽油族组成中烯烃收率越高,芳烃收率越低,汽油辛烷值和抗爆指数也越低;采用铵交换和水热改性制备介孔体积为0.142cm3/g的USY沸石催化剂的裂化产物中,汽柴油总收率为62.21%(质量分数),焦炭收率最低,汽油研究法辛烷值达到90.5;大豆油的催化裂化反应规律与小桐子油的一致,中等介孔催化剂裂化得到的汽油研究法辛烷值达到92.2。研究结果表明,采用催化裂化工艺,利用适当介孔的USY沸石催化剂,可以将植物油高效转化为车用轻质燃料,并且得到高辛烷值的汽油。
中图分类号:
郑庆庆. 沸石孔结构对植物油催化裂化性能的影响[J]. 化工进展, 2022, 41(2): 750-758.
ZHENG Qingqing. Influence of pore structure of USY zeolite on its performance in catalytic cracking of vegetable oil[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 750-758.
沸石 | 相对结晶度/% | 骨架硅铝比 | Na2O/% | SiO2/% | Al2O3/% |
---|---|---|---|---|---|
USYA | 80 | 14.88 | 0.464 | 76.1 | 23.1 |
USYB | 81 | 14.90 | 0.663 | 76.0 | 23.0 |
USYC | 82 | 14.79 | 0.698 | 74.6 | 24.4 |
USYD | 80 | 15.12 | 0.630 | 72.7 | 26.1 |
USYE | 75 | 15.08 | 0.900 | 70.2 | 28.6 |
表1 USY沸石样品的物理性质数据和元素组成
沸石 | 相对结晶度/% | 骨架硅铝比 | Na2O/% | SiO2/% | Al2O3/% |
---|---|---|---|---|---|
USYA | 80 | 14.88 | 0.464 | 76.1 | 23.1 |
USYB | 81 | 14.90 | 0.663 | 76.0 | 23.0 |
USYC | 82 | 14.79 | 0.698 | 74.6 | 24.4 |
USYD | 80 | 15.12 | 0.630 | 72.7 | 26.1 |
USYE | 75 | 15.08 | 0.900 | 70.2 | 28.6 |
沸石 | BET比表面积/m2·g-1 | 微孔面积/m2·g-1 | 介孔面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 |
---|---|---|---|---|---|---|
USYA | 622 | 562 | 60 | 0.347 | 0.242 | 0.105 |
USYB | 618 | 555 | 63 | 0.391 | 0.249 | 0.142 |
USYC | 617 | 540 | 77 | 0.428 | 0.239 | 0.189 |
USYD | 600 | 512 | 88 | 0.440 | 0.246 | 0.194 |
USYE | 551 | 455 | 96 | 0.401 | 0.187 | 0.214 |
表2 USY沸石的织构性质数据
沸石 | BET比表面积/m2·g-1 | 微孔面积/m2·g-1 | 介孔面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 |
---|---|---|---|---|---|---|
USYA | 622 | 562 | 60 | 0.347 | 0.242 | 0.105 |
USYB | 618 | 555 | 63 | 0.391 | 0.249 | 0.142 |
USYC | 617 | 540 | 77 | 0.428 | 0.239 | 0.189 |
USYD | 600 | 512 | 88 | 0.440 | 0.246 | 0.194 |
USYE | 551 | 455 | 96 | 0.401 | 0.187 | 0.214 |
沸石 | 骨架四配位铝 | 非骨架五配位铝 | 非骨架六配位铝 |
---|---|---|---|
USYA | 42.9 | 34.9 | 22.2 |
USYB | 51.0 | 27.4 | 21.6 |
USYC | 40.8 | 38.8 | 20.4 |
USYD | 41.0 | 37.0 | 22.0 |
USYE | 43.5 | 31.7 | 24.8 |
表3 27Al MAS NMR拟谱数据 (%)
沸石 | 骨架四配位铝 | 非骨架五配位铝 | 非骨架六配位铝 |
---|---|---|---|
USYA | 42.9 | 34.9 | 22.2 |
USYB | 51.0 | 27.4 | 21.6 |
USYC | 40.8 | 38.8 | 20.4 |
USYD | 41.0 | 37.0 | 22.0 |
USYE | 43.5 | 31.7 | 24.8 |
催化裂化产物 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
干气 | 1.58 | 1.62 | 1.57 | 1.43 | 1.40 |
液化石油气 | 15.27 | 15.00 | 13.43 | 12.52 | 12.70 |
汽油 | 37.26 | 37.11 | 37.23 | 37.50 | 37.21 |
柴油 | 24.34 | 25.10 | 26.18 | 26.78 | 27.20 |
渣油 | 3.68 | 3.90 | 3.87 | 3.70 | 3.74 |
焦炭 | 5.14 | 4.21 | 4.60 | 4.82 | 4.71 |
汽柴油之和 | 61.60 | 62.21 | 63.41 | 64.28 | 64.40 |
损失 | 12.73 | 13.06 | 13.12 | 13.25 | 13.04 |
表4 不同催化剂下小桐子油催化裂化产物分布单位:%
催化裂化产物 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
干气 | 1.58 | 1.62 | 1.57 | 1.43 | 1.40 |
液化石油气 | 15.27 | 15.00 | 13.43 | 12.52 | 12.70 |
汽油 | 37.26 | 37.11 | 37.23 | 37.50 | 37.21 |
柴油 | 24.34 | 25.10 | 26.18 | 26.78 | 27.20 |
渣油 | 3.68 | 3.90 | 3.87 | 3.70 | 3.74 |
焦炭 | 5.14 | 4.21 | 4.60 | 4.82 | 4.71 |
汽柴油之和 | 61.60 | 62.21 | 63.41 | 64.28 | 64.40 |
损失 | 12.73 | 13.06 | 13.12 | 13.25 | 13.04 |
组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
甲烷 | 0.27 | 0.31 | 0.24 | 0.27 | 0.27 |
乙烷 | 0.35 | 0.37 | 0.29 | 0.31 | 0.31 |
乙烯 | 0.97 | 0.96 | 0.89 | 0.86 | 0.84 |
丙烷 | 1.16 | 1.18 | 0.99 | 0.86 | 0.85 |
丙烯 | 5.64 | 5.61 | 4.91 | 4.86 | 4.95 |
异丁烷 | 4.41 | 4.24 | 3.72 | 3.39 | 3.40 |
正丁烷 | 0.67 | 0.66 | 0.52 | 0.49 | 0.48 |
反丁烯 | 1.20 | 1.13 | 1.02 | 0.95 | 1.07 |
正丁烯 | 0.74 | 0.70 | 0.58 | 0.55 | 0.61 |
异丁烯 | 0.74 | 0.73 | 0.58 | 0.56 | 0.62 |
顺式丁烯 | 0.79 | 0.75 | 0.67 | 0.62 | 0.70 |
氢转移指数 | 0.69 | 0.68 | 0.67 | 0.63 | 0.59 |
表5 不同催化剂下小桐子油催化裂化得到干气和液化石油气的组成 (%)
组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
甲烷 | 0.27 | 0.31 | 0.24 | 0.27 | 0.27 |
乙烷 | 0.35 | 0.37 | 0.29 | 0.31 | 0.31 |
乙烯 | 0.97 | 0.96 | 0.89 | 0.86 | 0.84 |
丙烷 | 1.16 | 1.18 | 0.99 | 0.86 | 0.85 |
丙烯 | 5.64 | 5.61 | 4.91 | 4.86 | 4.95 |
异丁烷 | 4.41 | 4.24 | 3.72 | 3.39 | 3.40 |
正丁烷 | 0.67 | 0.66 | 0.52 | 0.49 | 0.48 |
反丁烯 | 1.20 | 1.13 | 1.02 | 0.95 | 1.07 |
正丁烯 | 0.74 | 0.70 | 0.58 | 0.55 | 0.61 |
异丁烯 | 0.74 | 0.73 | 0.58 | 0.56 | 0.62 |
顺式丁烯 | 0.79 | 0.75 | 0.67 | 0.62 | 0.70 |
氢转移指数 | 0.69 | 0.68 | 0.67 | 0.63 | 0.59 |
汽油组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
正构烷烃 | 2.25 | 2.44 | 2.48 | 2.48 | 2.50 |
异构烷烃 | 29.73 | 30.80 | 31.58 | 30.71 | 31.08 |
烯烃 | 15.82 | 17.03 | 17.48 | 18.47 | 19.39 |
环烷烃 | 8.98 | 9.57 | 9.67 | 9.18 | 9.54 |
芳烃 | 38.19 | 36.30 | 33.01 | 32.71 | 32.21 |
表6 不同催化剂下小桐子油催化裂化得到汽油的族组成单位:%
汽油组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
正构烷烃 | 2.25 | 2.44 | 2.48 | 2.48 | 2.50 |
异构烷烃 | 29.73 | 30.80 | 31.58 | 30.71 | 31.08 |
烯烃 | 15.82 | 17.03 | 17.48 | 18.47 | 19.39 |
环烷烃 | 8.98 | 9.57 | 9.67 | 9.18 | 9.54 |
芳烃 | 38.19 | 36.30 | 33.01 | 32.71 | 32.21 |
汽油指标 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
研究法辛烷值(RON) | 90.6 | 90.5 | 88.4 | 87.9 | 88.3 |
马达法辛烷值(MON) | 76.2 | 76.1 | 74.3 | 74.2 | 74.5 |
抗爆指数 | 83.4 | 83.3 | 81.4 | 81.0 | 81.4 |
表7 不同催化剂下小桐子油催化裂化得到汽油的指标
汽油指标 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
研究法辛烷值(RON) | 90.6 | 90.5 | 88.4 | 87.9 | 88.3 |
马达法辛烷值(MON) | 76.2 | 76.1 | 74.3 | 74.2 | 74.5 |
抗爆指数 | 83.4 | 83.3 | 81.4 | 81.0 | 81.4 |
催化裂化产物 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
干气 | 1.65 | 1.55 | 1.45 | 1.40 |
液化石油气 | 14.73 | 13.54 | 12.92 | 12.37 |
汽油 | 38.35 | 37.19 | 38.76 | 37.37 |
柴油 | 24.67 | 27.28 | 26.62 | 27.27 |
渣油 | 3.49 | 3.59 | 3.51 | 4.17 |
焦炭 | 4.02 | 3.82 | 3.74 | 4.45 |
汽柴油收率之和 | 63.02 | 64.47 | 65.38 | 64.64 |
损失 | 13.09 | 13.03 | 13.00 | 13.07 |
表8 不同催化剂下大豆油催化裂化产物分布单位:%
催化裂化产物 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
干气 | 1.65 | 1.55 | 1.45 | 1.40 |
液化石油气 | 14.73 | 13.54 | 12.92 | 12.37 |
汽油 | 38.35 | 37.19 | 38.76 | 37.37 |
柴油 | 24.67 | 27.28 | 26.62 | 27.27 |
渣油 | 3.49 | 3.59 | 3.51 | 4.17 |
焦炭 | 4.02 | 3.82 | 3.74 | 4.45 |
汽柴油收率之和 | 63.02 | 64.47 | 65.38 | 64.64 |
损失 | 13.09 | 13.03 | 13.00 | 13.07 |
组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
甲烷 | 0.31 | 0.28 | 0.26 | 0.27 |
乙烷 | 0.38 | 0.37 | 0.34 | 0.32 |
乙烯 | 0.96 | 0.91 | 0.85 | 0.82 |
丙烷 | 1.23 | 1.13 | 1.05 | 0.85 |
丙烯 | 5.49 | 5.15 | 4.96 | 4.75 |
异丁烷 | 4.18 | 3.78 | 3.55 | 3.33 |
正丁烷 | 0.66 | 0.58 | 0.56 | 0.48 |
反丁烯 | 1.12 | 1.02 | 0.99 | 1.05 |
正丁烯 | 0.66 | 0.61 | 0.62 | 0.59 |
异丁烯 | 0.65 | 0.59 | 0.57 | 0.59 |
顺式丁烯 | 0.73 | 0.68 | 0.70 | 0.65 |
氢转移指数 | 0.70 | 0.68 | 0.66 | 0.61 |
表9 不同催化剂下大豆油催化裂化得到干气和液化石油气的组成 (%)
组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
甲烷 | 0.31 | 0.28 | 0.26 | 0.27 |
乙烷 | 0.38 | 0.37 | 0.34 | 0.32 |
乙烯 | 0.96 | 0.91 | 0.85 | 0.82 |
丙烷 | 1.23 | 1.13 | 1.05 | 0.85 |
丙烯 | 5.49 | 5.15 | 4.96 | 4.75 |
异丁烷 | 4.18 | 3.78 | 3.55 | 3.33 |
正丁烷 | 0.66 | 0.58 | 0.56 | 0.48 |
反丁烯 | 1.12 | 1.02 | 0.99 | 1.05 |
正丁烯 | 0.66 | 0.61 | 0.62 | 0.59 |
异丁烯 | 0.65 | 0.59 | 0.57 | 0.59 |
顺式丁烯 | 0.73 | 0.68 | 0.70 | 0.65 |
氢转移指数 | 0.70 | 0.68 | 0.66 | 0.61 |
汽油组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
正构烷烃 | 2.09 | 2.63 | 2.32 | 2.08 |
异构烷烃 | 25.44 | 26.31 | 27.19 | 25.67 |
烯烃 | 14.89 | 14.95 | 14.73 | 14.36 |
环烷烃 | 9.82 | 11.40 | 10.48 | 9.59 |
芳烃 | 41.41 | 41.91 | 41.57 | 37.91 |
表10 不同催化剂下大豆油催化裂化得到汽油的族组成单位:%
汽油组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
正构烷烃 | 2.09 | 2.63 | 2.32 | 2.08 |
异构烷烃 | 25.44 | 26.31 | 27.19 | 25.67 |
烯烃 | 14.89 | 14.95 | 14.73 | 14.36 |
环烷烃 | 9.82 | 11.40 | 10.48 | 9.59 |
芳烃 | 41.41 | 41.91 | 41.57 | 37.91 |
汽油指标 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
研究法辛烷值(RON) | 92.2 | 90.0 | 89.3 | 87.8 |
马达法辛烷值(MON) | 77.5 | 75.1 | 73.5 | 74.1 |
抗爆指数 | 84.9 | 82.6 | 81.4 | 81.0 |
表11 不同催化剂下大豆油催化裂化得到汽油的指标
汽油指标 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
研究法辛烷值(RON) | 92.2 | 90.0 | 89.3 | 87.8 |
马达法辛烷值(MON) | 77.5 | 75.1 | 73.5 | 74.1 |
抗爆指数 | 84.9 | 82.6 | 81.4 | 81.0 |
1 | ADEKUNLE A S, OYEKUNLE J A O, ODUWALE A I, et al. Biodiesel potential of used vegetable oils transesterified with biological catalysts[J]. Energy Reports, 2020, 6: 2861-2871. |
2 | PIMENTA J L C W, DE OLIVEIRA CAMARGO M, BELO DUARTE R, et al. Deoxygenation of vegetable oils for the production of renewable diesel: improved aerogel based catalysts[J]. Fuel, 2021, 290: 119979. |
3 | NAUSHAD M, AHAMAD T, KHAN M R. Fabrication of magnetic nanoparticles supported ionic liquid catalyst for transesterification of vegetable oil to produce biodiesel[J]. Journal of Molecular Liquids, 2021, 330: 115648. |
4 | JAHROMI H, ADHIKARI S, ROY P, et al. Production of green transportation fuels from Brassica carinata oil: a comparative study of noble and transition metal catalysts[J]. Fuel Processing Technology, 2021, 215: 106737. |
5 | DAS A K, CHAVAN A S, SHILL D C, et al. Jatropha Curcas oil for distribution transformer—A comparative review[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101259. |
6 | RUBAN M, KARIKALAN L, KANTI CHAKRABORTY S. Performances and emissions characteristics of diesel engine by using Jatropha oil[J]. Materials Today: Proceedings, 2021, 37: 631-633. |
7 | SHIRASAKI Y, NASU H, HASHIMOTO T, et al. Effects of types of zeolite and oxide and preparation methods on dehydrocyclization-cracking of soybean oil using hierarchical zeolite-oxide composite-supported Pt/NiMo sulfided catalysts[J]. Fuel Processing Technology, 2019, 194: 106109. |
8 | SONTHALIA A, KUMAR N. Hydroprocessed vegetable oil as a fuel for transportation sector: a review[J]. Journal of the Energy Institute, 2019, 92(1): 1-17. |
9 | NEGM N A, RABIE A M, MOHAMMED E A. Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: chromatographic and biofuel performance investigation[J]. Applied Catalysis B: Environmental, 2018, 239: 36-45. |
10 | MAMMADOVA T, ABBASOV M, MOVSUMOV N, et al. Production of diesel fractions by catalytic cracking of vacuum gas oil and its mixture with cottonseed oil under the influence of a magnetic field[J]. Egyptian Journal of Petroleum, 2018, 27(4): 1029-1033. |
11 | SAJJADI B, RAMAN A A A, ARANDIYAN H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 62-92. |
12 | ABBASOV V, MAMMADOVA T, ALIYEVA N, et al. Catalytic cracking of vegetable oils and vacuum gasoil with commercial high alumina zeolite and halloysite nanotubes for biofuel production[J]. Fuel, 2016, 181: 55-63. |
13 | RAMKUMAR S, KIRUBAKARAN V. Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: a critical review[J]. Energy Conversion and Management, 2016, 118: 155-169. |
14 | 王海京, 杜泽学, 高国强. 植物油近/超临界醇解制备生物柴油[J]. 化工进展, 2017, 36(6): 2131-2136. |
WANG Haijing, DU Zexue, GAO Guoqiang. Preparation of biodiesel from vegetable oil by sub/supercritical alcoholysis[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2131-2136. | |
15 | IDEM R O, KATIKANENI S P R, BAKHSHI N N. Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution[J]. Fuel Processing Technology, 1997, 51(1/2): 101-125. |
16 | KATIKANENI S P R, ADJAYE J D, BAKHSHI N N. Performance of aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils[J]. Energy & Fuels, 1995, 9(6): 1065-1078. |
17 | BHATIA S, LENG C T, TAMUNAIDU P. Modeling and simulation of transport riser reactor for catalytic cracking of palm oil for the production of biofuels[J]. Energy & Fuels, 2007, 21(6): 3076-3083. |
18 | TAMUNAIDU P, BHATIA S. Catalytic cracking of palm oil for the production of biofuels: optimization studies[J]. Bioresource Technology, 2007, 98(18): 3593-3601. |
19 | PRASAD Y S, BAKHSHI N N, MATHEWS J F, et al. Catalytic conversion of canola oil to fuels and chemical feedstocks: Part Ⅱ Effect of co-feeding steam on the performance of HZSM-5 catalyst[J]. The Canadian Journal of Chemical Engineering, 1986, 64(2): 285-292. |
20 | TWAIQ F A, ZABIDI N A M, BHATIA S. Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 1999, 38(9): 3230-3237. |
21 | DORONIN V P, POTAPENKO O V, LIPIN P V, et al. Conversion of vegetable oils under conditions of catalytic cracking[J]. Catalysis in Industry, 2014, 6(1): 53-59. |
22 | TIAN H, LI C Y, YANG C H, et al. Alternative processing technology for converting vegetable oils and animal fats to clean fuels and light olefins[J]. Chinese Journal of Chemical Engineering, 2008, 16(3): 394-400. |
23 | LI L, QUAN K J, XU J M, et al. Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst[J]. Fuel, 2014, 123: 189-193. |
24 | 申宝剑, 高雄厚, 曾鹏辉, 等. 一种高硅铝比小晶粒NaY分子筛: CN1785807A[P]. 2006-06-14. |
SHEN B J, GAO X H, ZENG P H, et al. High silicon aluminium ratio small crystal NaY molecular sieve: CN1785807A[P]. 2006-06-14. | |
25 | ZHENG Q Q, HUO L, LI H Y, et al. Exploring structural features of USY zeolite in the catalytic cracking of Jatropha Curcas L. seed oil towards higher gasoline/diesel yield and lower CO2 emission[J]. Fuel, 2017, 202: 563-571. |
26 | QIN Z X, SHEN B J, GAO X H, et al. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene[J]. Journal of Catalysis, 2011, 278(2): 266-275. |
27 | YAN Z M, MA D, ZHUANG J Q, et al. On the acid-dealumination of USY zeolite: a solid state NMR investigation[J]. Journal of Molecular Catalysis A: Chemical, 2003, 194(1/2): 153-167. |
28 | 喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27(4): 485-515. |
YU Zhiwu, ZHENG Anmin, WANG Qiang, et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: a review on recent progresses[J]. Chinese Journal of Magnetic Resonance, 2010, 27(4): 485-515. | |
29 | KATIKANENI S P R, ADJAYE J D, BAKHSHI N N. Studies on the catalytic conversion of canola oil to hydrocarbons: influence of hybrid catalysts and steam[J]. Energy & Fuels, 1995, 9(4): 599-609. |
30 | KATIKANENI S P R, ADJAYE J D, IDEM R O, et al. Catalytic conversion of canola oil over potassium-impregnated HZSM-5 catalysts: C2-C4 olefin production and model reaction studies[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3332-3346. |
31 | ADJAYE J D, BAKHSHI N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals Ⅰ: model compound studies and reaction pathways[J]. Biomass and Bioenergy, 1995, 8(3): 131-149. |
32 | CORMA A, FORNES V, MARTINEZ A, et al. Influence of the method of dealumination of Y zeolites on its behaviour for cracking N-heptane and vacuum gas-oil[J]. Studies in Surface Science and Catalysis, 1988, 37: 495-503. |
33 | SCHERZER J. Zeolitic FCC catalysts: scientific and technical aspects[J]. Cat. Rev., 1989, 31(3): 215-354. |
34 | WIELERS A F H, VAARKAMP M, POST M F M. Relation between properties and performance of zeolites in paraffin cracking[J]. Journal of Catalysis, 1991, 127(1): 51-66. |
35 | MAHESHWARI S, MARTÍNEZ C, TERESA PORTILLA M, et al. Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36[J]. Journal of Catalysis, 2010, 272(2): 298-308. |
36 | AITANI A, YOSHIKAWA T, INO T. Maximization of FCC light olefins by high severity operation and ZSM-5 addition[J]. Catalysis Today, 2000, 60(1/2): 111-117. |
37 | ARANDES J M, ABAJO I, FERNÁNDEZ I, et al. Effect of HZSM-5 zeolite addition to a fluid catalytic cracking catalyst. Study in a laboratory reactor operating under industrial conditions[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1917-1924. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |