化工进展 ›› 2022, Vol. 41 ›› Issue (2): 690-700.DOI: 10.16085/j.issn.1000-6613.2021-0425
收稿日期:
2021-03-02
修回日期:
2021-07-27
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
张军营
作者简介:
高天(1997—),男,硕士研究生,研究方向为光催化氧化单质汞。E-mail:基金资助:
GAO Tian(), ZHANG Yili, XIONG Zhuo, ZHAO Yongchun, ZHANG Junying()
Received:
2021-03-02
Revised:
2021-07-27
Online:
2022-02-05
Published:
2022-02-23
Contact:
ZHANG Junying
摘要:
汞是煤中普遍存在的一种剧毒非必需元素,燃煤烟气汞污染防治已成为国家重点关注和研究热点。本文系统介绍了光催化氧化单质汞的氧化钛基催化剂,包括形貌调控氧化钛基催化剂、金属改性氧化钛基催化剂、非金属改性氧化钛基催化剂、半导体复合氧化钛基催化剂以及负载型氧化钛基催化剂等。比较了不同改性措施下氧化钛基催化剂光催化氧化单质汞效率,讨论了催化剂的制备方法、光源、反应温度、烟气组成以及光催化反应器等因素对其氧化单质汞效率的影响,总结了氧化钛基催化剂光催化氧化单质汞反应机理,展望了光催化脱除燃煤烟气汞的潜在应用前景与挑战,旨在为燃煤烟气汞污染防治提供参考。完善催化剂改性方法同时开展中试规模实验将会成为燃煤烟气光催化氧化单质汞的重要研究内容与发展趋势,同时也是实现光催化氧化单质汞技术工业化应用的关键。
中图分类号:
高天, 张伊黎, 熊卓, 赵永椿, 张军营. 改性氧化钛光催化氧化单质汞性能及其影响因素研究进展[J]. 化工进展, 2022, 41(2): 690-700.
GAO Tian, ZHANG Yili, XIONG Zhuo, ZHAO Yongchun, ZHANG Junying. Research progress of modified titanium oxide photocatalytic oxidation of elemental mercury and its influencing factors[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 690-700.
1 | 韩粉女, 钟秦. 燃煤烟气脱汞技术的研究进展[J]. 化工进展, 2011, 30(4): 878-885. |
HAN Fennü, ZHONG Qin. Research progress of removal of mercury from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 878-885. | |
2 | 崔夏, 马丽萍, 邓春玲, 等. 燃煤烟气中汞去除的研究进展[J]. 化工进展, 2011, 30(7): 1607-1612, 1636. |
CUI Xia, MA Liping, DENG Chunling, et al. Research progress of removing mercury from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2011, 30(7): 1607-1612, 1636. | |
3 | 陈博陶, 韩丽娜, 常丽萍, 等. 汞的吸附及氧化机理的理论研究进展[J]. 化工进展, 2017, 36(S1): 436-441. |
CHEN Botao, HAN Lina, CHANG Liping, et al. Theoretic research on the adsorption and oxidation mechanism of mercury[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 436-441. | |
4 | TIAN H Z, ZHU C Y, GAO J J, et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies[J]. Atmospheric Chemistry and Physics, 2015, 15(17): 10127-10147. |
5 | WU Q R, WANG S X, LIU K Y, et al. Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention[J]. Environmental Science & Technology, 2018, 52(19): 11087-11093. |
6 | XUE W L, ZHANG G W, XU X F, et al. Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate[J]. Chemical Engineering Journal, 2011, 167(1): 397-402. |
7 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
8 | MONIZ S J A, SHEVLIN S A, MARTIN D J, et al. Visible-light driven heterojunction photocatalysts for water splitting – a critical review[J]. Energy & Environmental Science, 2015, 8(3): 731-759. |
9 | YULIATI L, YOSHIDA H. Photocatalytic conversion of methane[J]. Chemical Society Reviews, 2008, 37(8): 1592-1602. |
10 | YANG J P, MA S M, ZHAO Y C, et al. Elemental mercury removal from flue gas over TiO2 catalyst in an internal-illuminated honeycomb photoreactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(51): 17348-17355. |
11 | 段钰锋, 朱纯, 佘敏, 等. 燃煤电厂汞排放与控制技术研究进展[J]. 洁净煤技术, 2019, 25(2): 1-17. |
DUAN Yufeng, ZHU Chun, SHE Min, et al. Research progress on mercury emission and control technologies in coal-fired power plants [J]. Clean Coal Technology, 2019, 25(2): 1-17. | |
12 | JI Z Y, HUANG B B, GAN M, et al. Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: a review[J]. Process Safety and Environmental Protection, 2021, 150: 578-593. |
13 | 辛凤, 魏书洲, 张军峰, 等.燃煤烟气非碳基吸附剂脱汞研究进展[J]. 燃料化学学报, 2020, 48(12): 1409-1420. |
XIN Feng, WEI Shuzhou, ZHANG Junfeng, et al. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1409-1420. | |
14 | GUAN Y, LIU Y H, LYU Q, et al. Bismuth-based photocatalyst for photocatalytic oxidation of flue gas mercury removal: a review[J]. Journal of Hazardous Materials, 2021, 418: 126280-126280. |
15 | LIN M J, JING G H, SHEN H Z, et al. Mechanism of enhancement of photooxidation of Hg0 by CeO2-TiO2: effect of band structure on the formation of free radicals[J]. Chemical Engineering Journal, 2020, 382: 122827. |
16 | LIU D J, LI B, WU J, et al. Photocatalytic oxidation removal of elemental mercury from flue gas. A review[J]. Environmental Chemistry Letters, 2020, 18(2): 417-431. |
17 | DIEBOLD U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5/6/7/8): 53-229. |
18 | SANJINÉS R, TANG H, BERGER H, et al. Electronic structure of anatase TiO2 oxide[J]. Journal of Applied Physics, 1994, 75(6): 2945-2951. |
19 | KAVAN L, GRÄTZEL M, GILBERT S E, et al. Electrochemical and photoelectrochemical investigation of single-crystal anatase[J]. Journal of the American Chemical Society, 1996, 118(28): 6716-6723. |
20 | ANPO M, YAMASHITA H, ICHIHASHI Y, et al. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts[J]. Journal of Electroanalytical Chemistry, 1995, 396(1/2): 21-26. |
21 | LEE T G, BISWAS P. Kinetics of mercury capture using titania sorbents[J]. Journal of Aerosol Science, 1998, 29: S577-S578. |
22 | BISWAS P, OWENS T M, WU C Y. Control of toxic metal emissions from combustors using vapor phase sorbent materials[J]. Journal of Aerosol Science, 1995, 26(S1): S217-S218. |
23 | LEE T G, BISWAS P, HEDRICK E. Comparison of Hg0 capture efficiencies of three in situ generated sorbents[J]. AIChE Journal, 2001, 47(4): 954-961. |
24 | 杨珊, 张军营, 赵永椿, 等. 纳米TiO2-活性炭的制备及光催化脱汞初探[J]. 工程热物理学报, 2010, 31(2): 339-342. |
YANG Shan, ZHANG Junying, ZHAO Yongchun, et al. Pre-investigation of nanostructured TiO2-activated carbon composite for photo catalytic oxidation removal of mercury vapor[J]. Journal of Engineering Thermophysics, 2010, 31(2): 339-342. | |
25 | 杨珊, 张军营, 袁媛, 等. 纳米TiO2-硅酸铝纤维的制备及光催化脱汞研究[J]. 工程热物理学报, 2011, 32(1): 152-156. |
YANG Shan, ZHANG Junying, YUAN Yuan, et al. Composites of nano TiO2-aluminium silicate fiber for photocatalytic removal of mercury vapor[J]. Journal of Engineering Thermophysics, 2011, 32(1): 152-156. | |
26 | 袁媛, 赵永椿, 张军营, 等. TiO2-硅酸铝纤维纳米复合材料光催化脱硫脱硝脱汞的实验研究[J]. 中国电机工程学报, 2011, 31(11): 79-85. |
YUAN Yuan, ZHAO Yongchun, ZHANG Junying, et al. Study on photocatalytic experiments of desulfurization,denitrification and mercury removal using a TiO2-aluminum silicate fiber nanocomposite[J]. Proceedings of the CSEE, 2011, 31(11): 79-85. | |
27 | 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展[J]. 化工进展, 2013, 32(5): 1043-1052, 1162. |
XIONG Zhuo, ZHAO Yongchun, ZHANG Junying, et al. Research progress in photocatalytic reduction of CO2 using titania-based catalysts[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1043-1052, 1162. | |
28 | 崔星, 石建稳, 陈少华. TiO2光催化降解气态污染物的影响因素研究进展[J]. 化工进展, 2013, 32(10): 2377-2386. |
CUI Xing, SHI Jianwen, CHEN Shaohua.Influence factors of TiO2 photocatalytic degradation of gaseous pollutants[J]. Chemical Industry and Engineering Progress, 2013, 32(10): 2377-2386. | |
29 | LI Y, MURPHY P, WU C Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite[J]. Fuel Processing Technology, 2008, 89(6): 567-573. |
30 | LI Y, WU C Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2- TiO2 nanocomposite[J]. Environmental Science & Technology, 2006, 40(20): 6444-6448. |
31 | SHEN H Z, IE I R, YUAN C S, et al. The enhancement of photo-oxidation efficiency of elemental mercury by immobilized WO3/TiO2 at high temperatures[J]. Applied Catalysis B: Environmental, 2016, 195: 90-103. |
32 | SUN X M, WU J, TIAN F G, et al. Synergistic effect of surface defect and interface heterostructure on TiO2/BiOIO3 photocatalytic oxide gas-phase mercury[J]. Materials Research Bulletin, 2018, 103: 247-258. |
33 | WANG H Q, ZHOU S Y, XIAO L, et al. Titania nanotubes — a unique photocatalyst and adsorbent for elemental mercury removal[J]. Catalysis Today, 2011, 175(1): 202-208. |
34 | ZHUANG Z K, YANG Z M, ZHOU S Y, et al. Synergistic photocatalytic oxidation and adsorption of elemental mercury by carbon modified titanium dioxide nanotubes under visible light LED irradiation[J]. Chemical Engineering Journal, 2014, 253: 16-23. |
35 | WANG L L, ZHAO Y C, ZHANG J Y. Comprehensive evaluation of mercury photocatalytic oxidation by cerium-based TiO2 nanofibers[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 3804-3812. |
36 | TSAI C Y, LIU C W, HSI H C, et al. Synthesis of Ag-modified TiO2 nanotube and its application in photocatalytic degradation of dyes and elemental mercury[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(10): 3251-3262. |
37 | WU J, LI X, REN J X, et al. Experimental study of TiO2 hollow microspheres removal on elemental mercury in simulated flue gas[J]. Journal of Industrial and Engineering Chemistry, 2015, 32: 49-57. |
38 | ZHOU J S, HOU W H, QI P, et al. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas[J]. Environmental Science & Technology, 2013, 47(17): 10056-10062. |
39 | WU J, LI C E, ZHAO X Y, et al. Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2[J]. Applied Catalysis B: Environmental, 2015, 176/177: 559-569. |
40 | LEE W, BAE G N. Removal of elemental mercury Hg0 by nanosized V2O5/TiO2 catalysts[J]. Environmental Science & Technology, 2009, 43(5): 1522-1527. |
41 | CHEN S S, HSI H C, NIAN S H, et al. Synthesis of N-doped TiO2 photocatalyst for low-concentration elemental mercury removal under various gas conditions[J]. Applied Catalysis B: Environmental, 2014, 160/161: 558-565. |
42 | TSAI C Y, HSI H C, KUO T H, et al. Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal[J]. Aerosol and Air Quality Research, 2013, 13(2): 639-648. |
43 | TSAI C Y, PAN Y T, TSENG Y H, et al. Influence of carbon-functional groups with less hydrophilicity on a TiO2 photocatalyst for removing low-level elemental mercury[J]. Sustainable Environment Research, 2017, 27(2): 70-76. |
44 | 周思瑶. TiO2基纳米管吸附-光催化氧化脱除燃煤烟气中单质汞的研究[D]. 杭州: 浙江大学, 2011. |
ZHOU Siyao. Adsorption-photocatalytic oxidation performance of TiO2 based nanotubes in elemental mercury removal[D]. Hangzhou: Zhejiang University, 2011. | |
45 | 李忺. TiO2基空心微球制备及其光催化脱除燃煤烟气汞的研究[D]. 上海: 上海电力学院, 2015. |
LI Xian. Study on the preparation of titanium oxide-based hollow microspheres and its photocatalytic removal of flue gas mercury[D]. Shanghai: Shanghai University of Electric Power, 2015. | |
46 | RODRÍGUEZ S, ALMQUIST C, LEE T G, et al. A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor[J]. Journal of the Air & Waste Management Association, 2004, 54(2): 149-156. |
47 | SALEHIFAR N, NIKFARJAM A. Improvement the visible light photocatalytic activity of gold nanoparticle, Co2O3 and nitrogen doped TiO2 nanofibers[J]. Materials Letters, 2017, 188: 59-62. |
48 | LENZI G G, FÁVERO C V B, COLPINI L M S, et al. Photocatalytic reduction of Hg(Ⅱ) on TiO2 and Ag/TiO2 prepared by the sol-gel and impregnation methods[J]. Desalination, 2011, 270(1/2/3): 241-247. |
49 | TSAI C Y, KUO T H, HSI H C. Fabrication of Al-doped TiO2 visible-light photocatalyst for low-concentration mercury removal[J]. International Journal of Photoenergy, 2012, 2012: 1-8. |
50 | LIU Y, WANG Y J, WANG H Q, et al. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catalysis Communications, 2011, 12(14): 1291-1294. |
51 | YU J G, XIANG Q J, ZHOU M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures[J]. Applied Catalysis B: Environmental, 2009, 90(3/4): 595-602. |
52 | 代学伟, 吴江, 齐雪梅, 等. Fe掺杂TiO2催化剂制备及其光催化脱汞机理[J]. 环境科学研究, 2014, 27(8): 827-834. |
DAI Xuewei, WU Jiang, QI Xuemei, et al. Preparation of Fe-doped titania by sol-gel method and photocatalytic removal of gaseous mercury[J]. Research of Environmental Sciences, 2014, 27(8): 827-834. | |
53 | TSAI C Y, LIU C W, LAI L C, et al. Fabrication and characterization of tin-modified TNT via different tin compounds treatment[J]. Materials Research Bulletin, 2018, 97: 222-231. |
54 | LINSEBIGLER A L, LU G Q, YATES J T JR. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758. |
55 | GUAN Y, HU T, WU J, et al. Enhanced photocatalytic activity of TiO2/graphene by tailoring oxidation degrees of graphene oxide for gaseous mercury removal[J]. Korean Journal of Chemical Engineering, 2019, 36(1): 115-125. |
56 | HSI H C, TSAI C Y. Preparation of oxygen-vacant TiO2-x and activated carbon fiber composite using a single-step thermal plasma method for low-concentration elemental mercury removal[J]. Chemical Engineering Journal, 2012, 200/201/202: 18-24. |
57 | 张冲, 吴江, 陈先托. 铈碳共掺杂TiO2脱除烟气汞的实验研究[J]. 上海电力学院学报, 2016, 32(2): 135-139. |
ZHANG Chong, WU Jiang, CHEN Xiantuo. Experiment research of mercury removal using Ce,C-TiO2 from flue gas[J]. Journal of Shanghai University of Electric Power, 2016, 32(2): 135-139. | |
58 | CHEN D M, JIANG Z Y, GENG J Q, et al. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity[J]. Industrial & Engineering Chemistry Research, 2007, 46(9): 2741-2746. |
59 | XU J, WEI Y L, HUANG Y F, et al. Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity[J]. Ceramics International, 2014, 40(7): 10583-10591. |
60 | HONG X T, WANG Z P, CAI W M, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide[J]. Chemistry of Materials, 2005, 17(6): 1548-1552. |
61 | OHNO T, MITSUI T, MATSUMURA M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chemistry Letters, 2003, 32(4): 364-365. |
62 | UMEBAYASHI T, YAMAKI T, TANAKA S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chemistry Letters, 2003, 32(4): 330-331. |
63 | 杨振美. 非金属改性TiO2光催化氧化脱除烟气中零价汞的实验研究[D]. 杭州: 浙江大学, 2014. |
YANG Zhenmei. Experimental study on photocatalytic oxidation of elemental mercurv by nonmetal-doped TiO2[D]. Hangzhou: Zhejiang University, 2014. | |
64 | TSENG I H, WU J C S. Chemical states of metal-loaded titania in the photoreduction of CO2[J]. Catalysis Today, 2004, 97(2/3): 113-119. |
65 | YUAN Y, ZHAO Y C, LI H L, et al. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas[J]. Journal of Hazardous Materials, 2012, 227/228: 427-435. |
66 | 袁媛, 张军营, 樊国祥, 等. 静电纺丝法制备TiO2-WO3纳米纤维及光催化脱汞的研究[J]. 中国电机工程学报, 2012, 32(32): 44-49. |
YUAN Yuan, ZHANG Junying, FAN Guoxiang, et al. Electrospun TiO2-WO3 nanofibers for photocatalytic removal of mercury[J]. Proceedings of the CSEE, 2012, 32(32): 44-49. | |
67 | 袁媛, 张军营, 赵永椿, 等. In2O3与CuO掺杂TiO2纳米纤维光催化脱汞的研究[J]. 工程热物理学报, 2013, 34(12): 2405-2408. |
YUAN Yuan, ZHANG Junying, ZHAO Yongchun, et al. Photocatalytic removal of mercury using In2O3 or CuO doped TiO2 nanofibers[J]. Journal of Engineering Thermophysics, 2013, 34(12): 2405-2408. | |
68 | 袁媛, 张军营, 赵永椿, 等. TiO2-Ag2O复合纳米纤维烟气脱汞实验研究[J]. 华中科技大学学报(自然科学版), 2012, 40(6): 99-103. |
YUAN Yuan, ZHANG Junying, ZHAO Yongchun, et al. Removing elemental mercury by TiO2-Ag2O nanofiber[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(6): 99-103. | |
69 | LI H L, LI Y, WU C Y, et al. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 186-193. |
70 | 袁媛, 张军营, 李小龙, 等. TiO2-V2O5纳米纤维光催化氧化烟气中的Hg0[J]. 化工学报, 2012, 63(S2): 69-75. |
YUAN Yuan, ZHANG Junying, LI Xiaolong, et al. Photocatalytic oxidation of Hg0 in flue gas using TiO2-V2O5 nanofibers[J]. CIESC Journal, 2012, 63(S2): 69-75. | |
71 | 周肖. MOx/TiO2复合材料制备及其光催化脱汞实验研究[D]. 上海: 上海电力学院, 2018. |
ZHOU Xiao. Preparation of MOx/TiO2 composites and experimental study on photocatalytic oxidation of mercury[D]. Shanghai: Shanghai University of Electric Power, 2018. | |
72 | JI L, SREEKANTH P M, SMIRNIOTIS P G, et al. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas[J]. Energy & Fuels, 2008, 22(4): 2299-2306. |
73 | PITONIAK E, WU C Y, LONDEREE D, et al. Nanostructured silica-gel doped with TiO2 for mercury vapor control[J]. Journal of Nanoparticle Research, 2003, 5(3/4): 281-292. |
74 | LI Y, WU C Y. Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environmental Engineering Science, 2007, 24(1): 3-12. |
75 | PITONIAK E, WU C Y, MAZYCK D W, et al. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal[J]. Environmental Science & Technology, 2005, 39(5): 1269-1274. |
76 | 王路路. Hg/SO2/NOx的释放及其光催化氧化脱除机制的研究[D]. 武汉: 华中科技大学, 2018. |
WANG Lulu. Study on emissions of Hg/SO2/NOx and photocatalytic removal mechanisms[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
77 | 袁媛. 新型TiO2基纳米材料一体化脱除燃煤烟气中多种污染物的研究[D]. 武汉: 华中科技大学, 2012. |
YUAN Yuan. Removal of multiple pollutants from coal combustion flue gas over novel TiO2-based nanomaterials[D]. Wuhan: Huazhong University of Science and Technology, 2012. | |
78 | 杨珊. 纳米TiO2复合物光催化氧化脱除单质汞的实验研究[D]. 武汉: 华中科技大学, 2009. |
YANG Shan. Investigation of nano TiO2 composites for photocatalytic oxidation removal of mercury vapor[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
79 | WANG X Q, ZHOU Y N, LI R, et al. Removal of Hg0 from a simulated flue gas by photocatalytic oxidation on Fe and Ce co-doped TiO2 under low temperature[J]. Chemical Engineering Journal, 2019, 360: 1530-1541. |
80 | WU J, LI C E, CHEN X T, et al. Photocatalytic oxidation of gas-phase Hg0 by carbon spheres supported visible-light-driven CuO-TiO2[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 416-425. |
81 | YUAN Y, ZHANG J Y, LI H L, et al. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chemical Engineering Journal, 2012, 192: 21-28. |
82 | 谭增强, 刘豪, 邱建荣, 等. 榆木焦负载纳米TiO2光催化剂的制备及其脱除单质汞的试验研究[J]. 中国电机工程学报, 2010, 30(29): 37-41. |
TAN Zengqiang, LIU Hao, QIU Jianrong, et al. Preparation of elm char/nano-TiO2 photocatalyst and experimental studies on the removal of elemental mercury[J]. Proceedings of the CSEE, 2010, 30(29): 37-41. | |
83 | LEE T G, BISWAS P, HEDRICK E. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation[J]. Industrial & Engineering Chemistry Research, 2004, 43(6): 1411-1417. |
84 | HSI H C, TSAI C Y. Synthesis of TiO2-x visible-light photocatalyst using N2/Ar/He thermal plasma for low-concentration elemental mercury removal[J]. Chemical Engineering Journal, 2012, 191: 378-385. |
85 | TSAI C Y, HSI H C, BAI H, et al. TiO2-x nanoparticles synthesized using He/Ar thermal plasma and their effectiveness on low-concentration mercury vapor removal[J]. Journal of Nanoparticle Research, 2011, 13(10): 4739-4748. |
86 | SHEN H Z, IE I R, YUAN C S, et al. Removal of elemental mercury by TiO2 doped with WO3 and V2O5 for their photo- and thermo-catalytic removal mechanisms[J]. Environmental Science and Pollution Research, 2016, 23(6): 5839-5852. |
87 | YU J C C, NGUYEN V H, LASEK J, et al. NOx abatement from stationary emission sources by photo-assisted SCR: lab-scale to pilot-scale studies[J]. Applied Catalysis A: General, 2016, 523: 294-303. |
88 | 马斯鸣. 蜂窝陶瓷光纤反应器光催化脱汞研究[D]. 武汉: 华中科技大学, 2017. |
MA Siming. Enhanced photo-catalytic oxidation of elemental mercury using fiber-illuminated honeycomb photoreactor[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
89 | YU Y H, PAN Y T, WU Y T, et al. Photocatalytic NO reduction with C3H8 using a monolith photoreactor[J]. Catalysis Today, 2011, 174(1): 141-147. |
90 | WANG L L, ZHAO Y C, ZHANG J Y. Electrospun cerium-based TiO2 nanofibers for photocatalytic oxidation of elemental mercury in coal combustion flue gas[J]. Chemosphere, 2017, 185: 690-698. |
[1] | 崔维怡, 丁国敏, 谭乃迪. 二氧化钛基催化剂催化氧化甲醛的研究进展[J]. 化工进展, 2022, 41(12): 6310-6318. |
[2] | 张轩, 宋小三, 赵珀, 董元华, 刘云. 高级氧化技术处理1,4-二烷污染研究进展[J]. 化工进展, 2021, 40(S2): 380-388. |
[3] | 李兵, 张其龙, 王猛, 李济琛, 席雯, 周灿. 碱性吸收剂脱除燃煤烟气中HCl的研究进展[J]. 化工进展, 2021, 40(S1): 404-410. |
[4] | 赵瑞, 张翼, 余学海, 史晓宏, 刘毅, 王鹏, 韩涛. 中试平台SCR低温催化剂测试与氨逃逸分布特征[J]. 化工进展, 2021, 40(8): 4610-4615. |
[5] | 苏碧云, 冉良涛, 胡雅和, 张翱, 韩巧巧, 武晋娣, 刘伊婷, 孟祖超. 分子氧化及光电催化氧化对石油Pickering乳液的破乳研究进展[J]. 化工进展, 2021, 40(7): 3995-4002. |
[6] | 卞俊杰, 王万圆, 满恒孝, 文成新. BiOX(Cl,Br,I)/Bi2WO6异质结型复合光催化剂用于高浓度氮氧化物的脱除[J]. 化工进展, 2021, 40(11): 6094-6101. |
[7] | 赵红涛, 王树民. 燃煤烟气胺法脱碳MVR再生系统关键参数及能耗分析[J]. 化工进展, 2020, 39(S1): 256-262. |
[8] | 胡纪伟, 段钰锋, 耿新泽, 赵炜萌, 熊再立, 张子茜, 梁积鑫, 胡轩宇, 孙冠勋. 球磨时间对机械化学法NaBr改性飞灰脱汞性能的影响[J]. 化工进展, 2020, 39(11): 4717-4725. |
[9] | 张卫风,李娟,王秋华,邓兆雄,王璐璐. 燃煤烟气中CO2膜吸收分离技术的膜浸润特性述评[J]. 化工进展, 2019, 38(08): 3866-3873. |
[10] | 李欣怡, 潘丹萍, 胡斌, 程滕, 杨林军. 燃煤烟气中SO3迁移转化特性及其控制的研究现状及展望[J]. 化工进展, 2018, 37(12): 4887-4896. |
[11] | 李成伟, 张安超, 宋军, 张立享, 张丹, 刘志超. Ag/BiOI光催化剂湿法脱除烟气中气态单质汞性能及机理[J]. 化工进展, 2018, 37(04): 1442-1450. |
[12] | 喻 敏,董 勇,王 鹏,马春元. 氯元素对燃煤烟气脱汞的影响研究进展[J]. 化工进展, 2012, 31(07): 1610-1614. |
[13] | 李晓东1,2,朱元成1,2,潘素娟1,2,王长青1,2. TiO2纳米管阵列膜光催化降解苯胺[J]. 化工进展, 2012, 31(03): 558-561. |
[14] | 柏 源,李忠华,薛建明,王小明. 燃煤烟气H2O2脱硝性能影响因素的实验研究[J]. 化工进展, 2012, 31(01 ): 208-212. |
[15] | 崔 夏,马丽萍,邓春玲,许文娟,毛 宇. 燃煤烟气中汞去除的研究进展 [J]. 化工进展, 2011, 30(7): 1607-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |